Xie Liangjun, Tong Haoyang, Peng Guyang, Wu Hao, Shi Wenjing, Yu Kuai, Hu Jinsuo, Jiao Lei, Dong Xingyan, Guo Fengkai, Cai Wei, Zhang Yang, Wu Haijun, Liu Zihang, Sui Jiehe
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin, China.
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, China.
Nat Commun. 2025 Aug 12;16(1):7484. doi: 10.1038/s41467-025-62902-8.
Carrier mobility has conventionally been manipulated to enhance thermoelectric performance by reducing crystal defects. Therefore, an effective strategy for optimizing carrier mobility is highly desired for nanostructured materials. In this work, InSb nanoprecipitates are formed in situ within the nanostructured MgAgSb matrix, serving as channels for accelerating charge carriers. A high carrier mobility of 93.1 cmV s is achieved in MgAgSb-0.02InSb composite at 300 K, resulting in an average power factor of 23.8 μW cm K from 300 K to 553 K. To address the efficiency degradation caused by the narrow operational temperature range of MgAgSb, a two-pair segmented thermoelectric module is developed. A high conversion efficiency of 12.4% is achieved under a cold-side temperature of ~293 K and a temperature difference of ~540 K, presenting an effective strategy for carrier mobility optimization and opening new avenues for medium-temperature waste heat harvesting using MgAgSb.
传统上,人们通过减少晶体缺陷来调控载流子迁移率,以提高热电性能。因此,对于纳米结构材料而言,非常需要一种优化载流子迁移率的有效策略。在这项工作中,InSb纳米沉淀物在纳米结构的MgAgSb基体中原位形成,作为加速电荷载流子的通道。在300K时,MgAgSb-0.02InSb复合材料实现了93.1 cm²V⁻¹s⁻¹的高载流子迁移率,在300K至553K范围内,平均功率因子达到23.8 μW cm⁻¹K⁻²。为了解决MgAgSb工作温度范围窄导致的效率降低问题,开发了一种两对分段式热电模块。在冷端温度约为293K、温差约为540K的条件下,实现了12.4%的高转换效率,为载流子迁移率优化提供了一种有效策略,并为利用MgAgSb进行中温废热回收开辟了新途径。