Zhao Haoyu, Zuo Jing, Li Feng, Geng Chao, Li Xinyang, Wang Caixia
Opt Express. 2025 Feb 10;33(3):4151-4164. doi: 10.1364/OE.543887.
In recent years, orbital angular momentum (OAM) beams have shown great potential for applications in laser communication, laser processing, optical imaging, and detection. For free-space optical communication, high-power, high-quality vortex beams with a high signal-to-noise ratio are critical for long-distance communication. Coherent beam combining (CBC) of vortex beams enables the enhancement of power while maintaining high beam quality. Considering the orbital angular momentum spectrum as a new dimension of optical wave resources, achieving rapid phase locking of specific phases is crucial for increasing communication capacity. Traditional phase control methods based on wavefront intensity distribution face limitations in optimization, particularly for centrosymmetric laser phased arrays. To address this, we propose a deep learning-based method using spiral phase modulation. By designing a loss function that eliminates phase periodicity, we establish a nonlinear mapping between the sub-beam phases and the far-field image. To improve the phase prediction accuracy of the deep learning model, we introduce a power-in-the-bucket (PIB) metric for the vortex beam's main lobe, which mitigates dynamic phase errors caused by thermal and environmental disturbances. This method holds promise for application in high-power vortex beam optical systems with coherent combining of fiber laser phased arrays.
近年来,轨道角动量(OAM)光束在激光通信、激光加工、光学成像和检测等应用中展现出了巨大潜力。对于自由空间光通信而言,具有高信噪比的高功率、高质量涡旋光束对于长距离通信至关重要。涡旋光束的相干光束合成(CBC)能够在保持高光束质量的同时提高功率。将轨道角动量谱视为光波资源的一个新维度,实现特定相位的快速锁相对于增加通信容量至关重要。基于波前强度分布的传统相位控制方法在优化方面存在局限性,特别是对于中心对称激光相控阵。为了解决这一问题,我们提出一种基于深度学习的螺旋相位调制方法。通过设计消除相位周期性的损失函数,我们在子光束相位与远场图像之间建立了非线性映射。为了提高深度学习模型的相位预测精度,我们引入了一种针对涡旋光束主瓣的桶中功率(PIB)度量,它可以减轻由热和环境干扰引起的动态相位误差。该方法有望应用于具有光纤激光相控阵相干合成的高功率涡旋光束光学系统。