Kutscher Tonio F, Stock Christian, Sommer Florian, Jurkevicius Jonas, Meyer Stefan, Wiggert Moritz, Lamminger Philipp, Karpf Sebastian
Opt Express. 2025 Mar 10;33(5):10637-10648. doi: 10.1364/OE.541976.
Swept-source lasers have achieved significant success in sensing, imaging and microscopy. A special type of these lasers is the Fourier-domain mode-locked (FDML) laser, which operates at sweep rates in the megahertz (MHz) range while maintaining high instantaneous monochromaticity. By combining an FDML with an electro optical modulator (EOM) and master oscillator power amplifier (MOPA), a fast wavelength-swept pulsed laser with pulse peak powers in the kilowatt range can be constructed. An extension from the typical near-infrared (NIR) spectral range into the visible (VIS) range could enable a much wider field of applications. A direct approach is not feasible due to the lack of a suitable amplifier medium for MOPAs. A proven alternative is frequency-doubling through phase matching or quasi-phase matching (QPM) from the NIR. However, efficient frequency-doubling of low to mid-power lasers requires longer crystal lengths, limiting the input spectral bandwidth and hence is typically not feasible for broadband swept-source lasers. To overcome this limitation, here we describe a new approach using a periodically poled lithium niobate (PPLN) crystal with a special fan-out QPM structure. Spatial separation of the spectrally distinct pulses using an optical grating is used to obtain ideal QPM conditions for all wavelengths. This new concept allows broadband frequency-doubling and thus the generation of efficient swept laser sources in the NIR and VIS range. In this study we present the frequency-doubling of a 1550 nm FDML-MOPA laser to 775 nm with a pulse peak power of up to 35 W and a spectral span of 10 nm around 775 nm. We show application in ultrafast time-stretch LiDAR with 3D acquisitions of 2000 scans per second. This new laser technology opens up new possibilities for high speed and high bandwidth imaging and spectroscopy.
扫频激光器在传感、成像和显微镜领域取得了显著成功。这类激光器中的一种特殊类型是傅里叶域锁模(FDML)激光器,它在兆赫兹(MHz)范围内的扫描速率下工作,同时保持高瞬时单色性。通过将FDML与电光调制器(EOM)和主振荡器功率放大器(MOPA)相结合,可以构建出脉冲峰值功率在千瓦范围内的快速波长扫描脉冲激光器。从典型的近红外(NIR)光谱范围扩展到可见光(VIS)范围可以实现更广泛的应用领域。由于缺乏适用于MOPA的放大器介质,直接方法不可行。一种经过验证的替代方法是通过从近红外进行相位匹配或准相位匹配(QPM)来实现倍频。然而,低至中功率激光器的高效倍频需要更长的晶体长度,这限制了输入光谱带宽,因此对于宽带扫频激光器通常不可行。为了克服这一限制,我们在此描述一种使用具有特殊扇形输出QPM结构的周期性极化铌酸锂(PPLN)晶体的新方法。使用光栅对光谱上不同的脉冲进行空间分离,以获得所有波长的理想QPM条件。这个新概念允许宽带倍频,从而在近红外和可见光范围内产生高效的扫频激光源。在本研究中,我们展示了将1550 nm的FDML - MOPA激光器倍频至775 nm,脉冲峰值功率高达35 W,在775 nm附近的光谱跨度为10 nm。我们展示了其在每秒2000次扫描的3D采集的超快时间拉伸激光雷达中的应用。这种新的激光技术为高速和高带宽成像及光谱学开辟了新的可能性。