Suppr超能文献

原发性膀胱输尿管反流患儿突破性尿路感染风险预测模型的开发

Development of a prediction model for risk of breakthrough urinary tract infection in children with primary vesicoureteral reflux.

作者信息

Yang Zhenzhen, Li Jiayi, Liu Pei, Sun Ning, Song Hongcheng, Zhang Weiping

机构信息

Department of Urology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

出版信息

Transl Androl Urol. 2025 Jul 30;14(7):1882-1892. doi: 10.21037/tau-2025-85. Epub 2025 Jul 28.

Abstract

BACKGROUND

Many factors influence the risk of breakthrough urinary tract infection (BTUTI) in children with primary vesicoureteral reflux (VUR). Distal ureteral diameter ratio (UDR) and VUR index (VURx) have been shown in studies as predictors of BTUTI. We aimed to establish a predictive model through selecting voiding cystourethrography (VCUG)-related parameters in combination with clinical parameters for BTUTI in children with primary VUR.

METHODS

A retrospective cohort analysis was conducted on the clinical characteristics and VCUG-related parameters of patients with primary VUR. Univariable and multivariable analyses were performed to identify independent predictors and develop a model for predicting the probability of BTUTI. We compared our model against two other metrics for predicting BTUTI: the distal UDR and the VURx. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the predictive performance of the model.

RESULTS

A total of 193 patients were included in this study. Based on the results of univariable and multivariable analyses, three variables of sex (female) [odds ratio (OR): 3.39; 95% confidence interval (CI): 1.57-7.33], high-grade VUR (OR: 2.27; 95% CI: 0.98-5.25), and ureterovesical junction diameter of ureter (UVJ diameter) (OR: 5.85; 95% CI: 1.81-18.92) were used to create a prediction model and a nomogram. The AUCs for our model, the UDR, and the VURx in predicting the occurrence of BTUTI were 0.736, 0.680, and 0.546, respectively. The DCA revealed the clinical usefulness of the model.

CONCLUSIONS

This study identified three independent variables, namely, female sex, high-grade VUR, and UVJ diameter, for predicting the probability of BTUTI in primary VUR. The model and nomogram established in this study can greatly assist urologists in individualizing the management of primary VUR patients.

摘要

背景

许多因素影响原发性膀胱输尿管反流(VUR)患儿发生突破性尿路感染(BTUTI)的风险。研究表明,远端输尿管直径比(UDR)和VUR指数(VURx)可作为BTUTI的预测指标。我们旨在通过选择排尿性膀胱尿道造影(VCUG)相关参数并结合临床参数,建立原发性VUR患儿BTUTI的预测模型。

方法

对原发性VUR患者的临床特征和VCUG相关参数进行回顾性队列分析。进行单变量和多变量分析,以确定独立预测因素并建立预测BTUTI发生概率的模型。我们将我们的模型与另外两个预测BTUTI的指标进行比较:远端UDR和VURx。采用受试者操作特征(ROC)曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)来评估模型的预测性能。

结果

本研究共纳入193例患者。根据单变量和多变量分析结果,使用性别(女性)[比值比(OR):3.39;95%置信区间(CI):1.57 - 7.33]、高级别VUR(OR:2.27;95%CI:0.98 - 5.25)和输尿管膀胱连接部直径(UVJ直径)(OR:5.85;95%CI:1.81 - 18.92)这三个变量创建了预测模型和列线图。我们的模型、UDR和VURx预测BTUTI发生的AUC分别为0.736、0.680和0.546。DCA显示了该模型的临床实用性。

结论

本研究确定了三个独立变量,即女性性别、高级别VUR和UVJ直径,用于预测原发性VUR患者发生BTUTI的概率。本研究建立的模型和列线图可极大地帮助泌尿外科医生对原发性VUR患者进行个体化管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4054/12336739/6c92fbca9fab/tau-14-07-1882-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验