Suppr超能文献

预测3特斯拉静息态功能磁共振成像功能连接中的大血管贡献:一种基于模型的方法。

Predicting the macrovascular contribution to resting-state fMRI functional connectivity at 3 Tesla: A model-informed approach.

作者信息

Zhong Xiaole Z, Polimeni Jonathan R, Chen J Jean

机构信息

Rotman Research Institute at Baycrest, Toronto, ON, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.

出版信息

Imaging Neurosci (Camb). 2024 Oct 15;2. doi: 10.1162/imag_a_00315. eCollection 2024.

Abstract

Macrovascular biases have been a long-standing challenge for functional magneticresonance imaging (fMRI), limiting its ability to detect spatially specificneural activity. Recent experimental studies, including our own, foundsubstantial resting-state macrovascular blood-oxygenation level-dependent (BOLD)fMRI contributions from large veins and arteries, extending into theperivascular tissue at 3 T and 7 T. The objective of this study is todemonstrate the feasibility of predicting, using a biophysical model, theexperimental resting-state BOLD fluctuation amplitude (RSFA) and associatedfunctional connectivity (FC) values at 3 Tesla. We investigated the feasibilityof both 2D and 3D infinite-cylinder Models as well as macrovascular anatomicalnetworks (macro-VANs) derived from angiograms. Our results demonstrate that (1)with the availability of macro-VANs, it is feasible to model macrovascular BOLDFC using both the macro-VAN-based model and 3D infinite-cylinder Models, thoughthe former performed better; (2) biophysical modelling can accurately predictthe BOLD pair-wise correlation near to large veins (with Rrangingfrom 0.53 to 0.93 across different subjects), but not near to large arteries;(3) compared with FC, biophysical modelling provided less accurate predictionsfor RSFA; (4) modelling of perivascular BOLD connectivity was feasible at closedistances from veins (with Rranging from 0.08 to 0.57), but notarteries, with performance deteriorating with increasing distance. While ourcurrent study demonstrates the feasibility of simulating macrovascular BOLD inthe resting state, our methodology may also apply to understanding task-basedBOLD. Furthermore, these results suggest the possibility of correcting formacrovascular bias in resting-state fMRI and other types of fMRI usingbiophysical modelling based on vascular anatomy.

摘要

大血管偏差一直是功能磁共振成像(fMRI)面临的长期挑战,限制了其检测空间特异性神经活动的能力。包括我们自己的研究在内,最近的实验研究发现,大静脉和大动脉对静息状态下的血氧水平依赖(BOLD)fMRI有显著贡献,在3T和7T时延伸至血管周围组织。本研究的目的是使用生物物理模型证明在3特斯拉预测实验性静息状态BOLD波动幅度(RSFA)和相关功能连接(FC)值的可行性。我们研究了二维和三维无限圆柱模型以及从血管造影图导出的大血管解剖网络(macro-VANs)的可行性。我们的结果表明:(1)有了macro-VANs,使用基于macro-VAN的模型和三维无限圆柱模型对大血管BOLD FC进行建模是可行的,尽管前者表现更好;(2)生物物理建模可以准确预测大静脉附近的BOLD成对相关性(不同受试者的R范围为0.53至0.93),但不能预测大动脉附近的相关性;(3)与FC相比,生物物理建模对RSFA的预测准确性较低;(4)在距离静脉较近的范围内(R范围为0.08至0.57)对血管周围BOLD连接性进行建模是可行的,但对动脉不可行,且随着距离增加性能会下降。虽然我们目前的研究证明了在静息状态下模拟大血管BOLD的可行性,但我们的方法也可能适用于理解基于任务的BOLD。此外,这些结果表明,使用基于血管解剖的生物物理建模来校正静息状态fMRI和其他类型fMRI中的大血管偏差是有可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/793e/12290778/4d0e41bc2c71/imag_a_00315_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验