Pourmotabbed Haatef, Martin Caroline G, Goodale Sarah E, Doss Derek J, Wang Shiyu, Bayrak Roza G, Kang Hakmook, Morgan Victoria L, Englot Dario J, Chang Catie
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States.
Imaging Neurosci (Camb). 2025 Jul 21;3. doi: 10.1162/IMAG.a.91. eCollection 2025.
Vigilance is a continuously altering state of cortical activation that influences cognition and behavior and is disrupted in multiple brain pathologies. Neuromodulatory nuclei in the brainstem and basal forebrain are implicated in arousal regulation and are key drivers of widespread neuronal activity and communication. However, it is unclear how their large-scale brain network architecture changes across dynamic variations in vigilance state (i.e., alertness and drowsiness). In this study, we leverage simultaneous electroencephalography (EEG) and 3T multi-echo functional magnetic resonance imaging (fMRI) to elucidate the vigilance-dependent connectivity of arousal regulation centers in the brainstem and basal forebrain. During states of low vigilance, most of the neuromodulatory nuclei investigated here exhibit a stronger global correlation pattern and greater connectivity to the thalamus, precuneus, and sensory and motor cortices. In a more alert state, the nuclei exhibit the strongest connectivity to the salience, default mode, and auditory networks. These vigilance-dependent correlation patterns persist even after applying multiple preprocessing strategies to reduce systemic vascular effects. To validate our findings, we analyze two large 3T and 7T fMRI datasets from the Human Connectome Project and demonstrate that the static and vigilance-dependent connectivity profiles of the arousal nuclei are reproducible across 3T multi-echo, 3T single-echo, and 7T single-echo fMRI modalities. Overall, this work provides novel insights into the role of neuromodulatory systems in vigilance-related brain activity.
警觉是一种不断变化的皮层激活状态,它影响认知和行为,并且在多种脑部病变中受到破坏。脑干和基底前脑的神经调节核参与觉醒调节,是广泛神经元活动和通讯的关键驱动因素。然而,尚不清楚它们的大规模脑网络结构如何随着警觉状态(即警觉和困倦)的动态变化而改变。在本研究中,我们利用同步脑电图(EEG)和3T多回波功能磁共振成像(fMRI)来阐明脑干和基底前脑觉醒调节中心的警觉依赖性连接。在低警觉状态下,此处研究的大多数神经调节核表现出更强的全局相关模式以及与丘脑、楔前叶、感觉和运动皮层更强的连接性。在更警觉的状态下,这些核与突显网络、默认模式网络和听觉网络表现出最强的连接性。即使应用多种预处理策略来减少全身血管效应后,这些警觉依赖性相关模式仍然存在。为了验证我们的发现,我们分析了来自人类连接组计划的两个大型3T和7T fMRI数据集,并证明觉醒核的静态和警觉依赖性连接概况在3T多回波、3T单回波和7T单回波fMRI模式下是可重复的。总体而言,这项工作为神经调节系统在与警觉相关的脑活动中的作用提供了新的见解。