de Castro Leonardo Leal, Gomes da Rosa Barbara, Peixoto-Rodrigues Maria Carolina, Revoredo Vicentino Amanda Roberta, Fraga-Junior Vanderlei da Silva, Cascabulho Cynthia M, Diniz Luan Pereira, Benjamim Claudia Farias, Bracko Oliver, Scharfstein Julio, Adesse Daniel
Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Microbiol Spectr. 2025 Aug 13:e0107425. doi: 10.1128/spectrum.01074-25.
Toxoplasmosis is caused by infection with and is one of the most prevalent food-borne parasitic disease worldwide. disseminates through the host organism and forms a latency-specific structure called bradyzoite cysts, found primarily in muscle and neuronal cells. In mice, Toxoplasma leads to sustained brain microvascular abnormalities, including capillary rarefaction, microglial activation, and blood-brain barrier (BBB) breakdown, resulting in synaptic and neuronal loss, behavioral and cognitive damages. We hypothesized that cyst-bearing neurons could signal distinct classes of molecules that would orchestrate neurovascular and neuroinflammatory processes. Primary mouse cortical neurons were infected with (ME49 strain) tachyzoites, which, 7 days post infection, generated cysts. We determined angiogenic-regulating factors from the neuronal conditioned media (nCM) using a proteome array and found nine molecules, belonging to four main functional clusters: (i) angiogenic signaling (VEGFA); (ii) endothelial-regulating growth factors (IGFBP-2, -3, -9 and PDGF-AA), (iii) chemoattractants (CCL-2, CCL-3, and CXCL12), and (iv) fractalkine signaling (CX3CL1). The main targets were validated in neuronal culture samples and in brain cortices by ELISA, RT-qPCR, or immunoblotting. CX3CL1 secretion was reduced in infected cultures and accumulated on neuronal surface. , the CX3CL1 receptor (CX3CR1) was upregulated, whereas the CX3CL1 soluble fraction was decreased. Recombinant CX3CL1 decreased arginase-1 and increased iNOS expression in nCM-treated microglial cells, indicating that CX3CL1 polarizes microglia to a pro-resolutive state. Our data suggest that CX3CL1 plays a key role in regulating neuroinflammatory signaling in acquired Toxoplasmosis, highlighting its potential to prevent the neurocognitive damage observed in infected individuals.
is a widespread parasite that forms latent cysts in neurons during chronic brain infection. How these infected neurons contribute to long-term brain damage is not well understood. In this study, we used a neuron-specific culture system and a mouse model to show that infection alters the release of key signaling molecules by neurons. We found that infected neurons reduce secretion of fractalkine, a molecule that normally helps keep brain immune cells (microglia) in a resting state. At the same time, infected neurons showed increased expression of inflammatory and vascular-related genes, but not always matching increases in protein levels, pointing to complex regulation. These changes may contribute to blood-brain barrier dysfunction and persistent inflammation seen in chronic infection. Our findings highlight the role of neuron-derived signals in driving -induced brain pathology and identify fractalkine as a potential target to reduce inflammation.
弓形虫病由感染弓形虫引起,是全球最常见的食源性寄生虫病之一。弓形虫在宿主体内传播并形成一种称为缓殖子囊肿的潜伏特异性结构,主要存在于肌肉和神经细胞中。在小鼠中,弓形虫会导致持续的脑微血管异常,包括毛细血管稀疏、小胶质细胞活化和血脑屏障(BBB)破坏,从而导致突触和神经元丧失、行为和认知损害。我们假设带有囊肿的神经元可以发出不同类别的分子信号,这些分子将协调神经血管和神经炎症过程。原代小鼠皮质神经元用弓形虫(ME49株)速殖子感染,感染7天后产生囊肿。我们使用蛋白质组阵列从神经元条件培养基(nCM)中确定血管生成调节因子,发现了9种分子,属于四个主要功能簇:(i)血管生成信号(VEGFA);(ii)内皮细胞调节生长因子(IGFBP-2、-3、-9和PDGF-AA),(iii)趋化因子(CCL-2、CCL-3和CXCL12),以及(iv)分形趋化因子信号(CX3CL1)。通过ELISA、RT-qPCR或免疫印迹在神经元培养样本和脑皮质中验证了主要靶点。感染培养物中CX3CL1的分泌减少并在神经元表面积累。此外,CX3CL1受体(CX3CR1)上调,而CX3CL1可溶性部分减少。重组CX3CL1降低了nCM处理的小胶质细胞中精氨酸酶-1的表达并增加了诱导型一氧化氮合酶(iNOS)的表达,表明CX3CL1将小胶质细胞极化到促消退状态。我们的数据表明,CX3CL1在调节获得性弓形虫病中的神经炎症信号中起关键作用,突出了其预防感染个体中观察到的神经认知损害的潜力。
弓形虫是一种广泛传播的寄生虫,在慢性脑感染期间在神经元中形成潜伏囊肿。这些受感染的神经元如何导致长期脑损伤尚不清楚。在这项研究中,我们使用神经元特异性培养系统和小鼠模型表明,弓形虫感染会改变神经元释放关键信号分子的情况。我们发现受感染的神经元减少了分形趋化因子的分泌,分形趋化因子是一种通常有助于使脑免疫细胞(小胶质细胞)保持静止状态的分子。同时,受感染的神经元显示炎症和血管相关基因的表达增加,但蛋白质水平的增加并不总是与之匹配,这表明存在复杂的调节。这些变化可能导致慢性感染中出现的血脑屏障功能障碍和持续炎症。我们的研究结果突出了神经元衍生信号在驱动弓形虫诱导的脑病理中的作用,并确定分形趋化因子是减少炎症的潜在靶点。