Bagès Camille, Chabanon Morgan, Kools Wouter, Dos Santos Thomas, Pagès Rebecca, Sirkia Maria Elena, Leduc Cécile, Houdusse Anne, Jégou Antoine, Romet-Lemonne Guillaume, Wioland Hugo
Université Paris-Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France.
Eur Phys J E Soft Matter. 2025 Aug 13;48(8-9):49. doi: 10.1140/epje/s10189-025-00509-z.
Tropomyosins are central regulators of the actin cytoskeleton, controlling the binding and activity of the other actin binding proteins. The interaction between tropomyosin and actin is quite unique: single tropomyosin dimers bind weakly to actin filaments but get stabilised by end-to-end attachment with neighbouring tropomyosin dimers, forming clusters which wrap around the filament. Force spectroscopy is a powerful approach for studying protein-protein interactions, but classical methods which usually pull with pN forces on a single protein pair, are not well adapted to tropomyosins. Here, we propose a method in which a hydrodynamic drag force is applied directly to the proteins of interest, by imposing a controlled fluid flow inside a microfluidic chamber. The breaking of the protein bonds is directly visualised with fluorescence microscopy. Using this approach, we reveal that very low forces from 0.01 to 0.1 pN per tropomyosin dimer trigger the detachment of entire tropomyosin clusters from actin filaments. We show that the tropomyosin cluster detachment rate depends on the cytoplasmic tropomyosin isoform (Tpm1.6, 1.7, 1.8) and increases exponentially with the applied force. These observations lead us to propose a cluster detachment model which suggests that tropomyosins dynamically explore different positions over the actin filament. Our experimental setup can be used with many other cytoskeletal proteins, and we show, as a proof-of-concept, that the velocity of myosin-X motors is reduced by an opposing fluid flow. Overall, this method expands the range of protein-protein interactions that can be studied by force spectroscopy.
原肌球蛋白是肌动蛋白细胞骨架的核心调节因子,控制着其他肌动蛋白结合蛋白的结合和活性。原肌球蛋白与肌动蛋白之间的相互作用非常独特:单个原肌球蛋白二聚体与肌动蛋白丝的结合较弱,但通过与相邻原肌球蛋白二聚体的端对端连接而稳定下来,形成围绕肌动蛋白丝的簇。力谱学是研究蛋白质-蛋白质相互作用的一种强大方法,但通常以皮牛力拉动单个蛋白质对的经典方法并不适用于原肌球蛋白。在此,我们提出一种方法,通过在微流控腔内施加受控的流体流动,将流体动力拖曳力直接施加到感兴趣的蛋白质上。蛋白质键的断裂通过荧光显微镜直接观察到。使用这种方法,我们发现每个原肌球蛋白二聚体从0.01到0.1皮牛范围的极低力会触发整个原肌球蛋白簇从肌动蛋白丝上脱离。我们表明原肌球蛋白簇的脱离速率取决于细胞质原肌球蛋白同工型(Tpm1.6、1.7、1.8),并随施加的力呈指数增加。这些观察结果使我们提出了一个簇脱离模型,该模型表明原肌球蛋白在肌动蛋白丝上动态探索不同位置。我们的实验装置可与许多其他细胞骨架蛋白一起使用,并且作为概念验证,我们表明反向流体流动会降低肌球蛋白-X马达的速度。总体而言,这种方法扩展了可通过力谱学研究的蛋白质-蛋白质相互作用的范围。
Eur Phys J E Soft Matter. 2025-8-13
2025-1
2025-1
Cochrane Database Syst Rev. 2018-7-12
Cochrane Database Syst Rev. 2020-10-19
Cochrane Database Syst Rev. 2014