Villa Greta, Del Pino Javier, Dumont Vincent, Rastelli Gianluca, Michałek Mateusz, Eichler Alexander, Zilberberg Oded
Department of Physics, University of Konstanz, 78464 Konstanz, Germany.
Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland.
Sci Adv. 2025 Aug 15;11(33):eadt9311. doi: 10.1126/sciadv.adt9311. Epub 2025 Aug 13.
In topology, averaging over local geometrical details reveals robust global features. These are crucial in physics for understanding quantized bulk transport and exotic boundary effects of linear wave propagation in (meta-)materials. Beyond linear Hamiltonian systems, topological physics strives to characterize open (non-Hermitian) and interacting systems. Here, we establish a framework for the topological classification of driven-dissipative nonlinear systems by defining a graph index for their Floquet semiclassical equations of motion. Our index builds upon the topology of vector flows and encodes the particle-hole nature of excitations around all out-of-equilibrium stationary states. Thus, we uncover the topology of nonlinear resonator's dynamics under external and parametric forcing. Our framework sheds light on the topology of driven-dissipative phases, including under- to overdamped responses and symmetry-broken phases linked to population inversion. We therefore expose the pervasive link between topology and nonlinear dynamics, with broad implications for interacting topological insulators, topological solitons, neuromorphic networks, and bosonic codes.
在拓扑学中,对局部几何细节进行平均会揭示出稳健的全局特征。这些特征在物理学中对于理解(超)材料中线性波传播的量子化体输运和奇异边界效应至关重要。除了线性哈密顿系统,拓扑物理学致力于刻画开放(非厄米)和相互作用系统。在此,我们通过为驱动耗散非线性系统的弗洛凯半经典运动方程定义一个图指标,建立了一个用于此类系统拓扑分类的框架。我们的指标基于向量流的拓扑结构构建,并编码了所有非平衡稳态周围激发的粒子 - 空穴性质。因此,我们揭示了外部和参数驱动下非线性谐振器动力学的拓扑结构。我们的框架揭示了驱动耗散相的拓扑结构,包括欠阻尼到过阻尼响应以及与粒子数反转相关的对称破缺相。因此,我们揭示了拓扑与非线性动力学之间的普遍联系,这对相互作用的拓扑绝缘体、拓扑孤子、神经形态网络和玻色子编码具有广泛的影响。