Lieberich Francisco, Saito Yohei, Agarmani Yassine, Sasaki Takahiko, Yoneyama Naoki, Winter Stephen M, Lang Michael, Gati Elena
Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.
Institute of Solid State and Materials Physics, Technical University of Dresden, 01187 Dresden, Germany.
Sci Adv. 2025 Aug 15;11(33):eadz0699. doi: 10.1126/sciadv.adz0699. Epub 2025 Aug 13.
Geometric frustration is a key ingredient in the emergence of exotic states of matter, such as the quantum spin liquid in Mott insulators. Although there has been intense interest in experimentally tuning frustration in candidate materials, achieving precise and continuous control has remained a major hurdle-particularly in accessing the properties of the ideally frustrated lattice. Here, we show that large, finely controlled anisotropic strains can effectively tune the degree of geometric frustration in the Mott insulating [Formula: see text]-a slightly anisotropic triangular-lattice quantum magnet. Using thermodynamic measurements of the elastocaloric effect, we experimentally map out a temperature-strain phase diagram that captures both the ground state of the isotropic lattice and the less frustrated parent state. Our results provide a benchmark for calculations of the triangular-lattice Hubbard model as a function of frustration and highlight the power of lattice engineering as a route to realizing perfectly frustrated quantum materials.
几何阻挫是奇异物质态出现的关键因素,例如莫特绝缘体中的量子自旋液体。尽管人们对在候选材料中通过实验调节阻挫有着浓厚兴趣,但实现精确且连续的控制仍然是一个主要障碍,尤其是在获取理想阻挫晶格的性质方面。在此,我们表明,大的、精细可控的各向异性应变能够有效地调节莫特绝缘体[化学式:见正文](一种略微各向异性的三角晶格量子磁体)中的几何阻挫程度。通过对弹性热效应的热力学测量,我们实验绘制出了一个温度 - 应变相图,该相图捕捉了各向同性晶格的基态以及阻挫较小的母态。我们的结果为作为阻挫函数的三角晶格哈伯德模型的计算提供了一个基准,并突出了晶格工程作为实现完美阻挫量子材料途径的强大作用。