Alvarez-Guaita Anna, Bernaus-Esqué Marc, Blanco-Muñoz Patricia, Liu Yangjing, Sebastian David, Meneses-Salas Elsa, Nguyen Mai K Linh, Zorzano Antonio, Tebar Francesc, Enrich Carlos, Grewal Thomas, Rentero Carles
Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Spain.
Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain.
J Cell Physiol. 2025 Aug;240(8):e70084. doi: 10.1002/jcp.70084.
Maintaining constant blood glucose levels is essential for energizing glucose-dependent tissues. During the fed state, insulin lowers elevated blood glucose, while in the fasted state, glucagon maintains blood glucose levels through hepatic stimulation of fatty acid oxidation, glycogenolysis, and gluconeogenesis (GNG). The liver plays a crucial role in these metabolic adaptations. Deregulation of GNG is a hallmark of type 2 diabetes mellitus (T2DM), driven by hepatic insulin resistance, elevated glucagon levels, and excess circulating free fatty acids. The glucose metabolism of 8- to 12-week-old WT and Anxa6 knock-out (Anxa6) mice was analysed during regular feeding and fasting using indirect calorimetry, tolerance tests and biochemical analysis. Despite normal insulin-sensitive control of glucose levels and effective glycogen mobilization, Anxa6 mice display rapid hypoglycaemia during fasting. This metabolic disarrangement, in particular during the early stages of fasting is characterized by a low respiratory exchange ratio (RER) and increased lipid oxidation during the diurnal period, indicating a reliance on lipid oxidation due to hypoglycaemia. Elevated glucagon levels during fasting suggest deficiencies in GNG. Further analysis reveals that Anxa6 mice are unable to utilize alanine for hepatic GNG, highlighting a specific impairment in the glucose-alanine cycle in fasted Anxa6 mice, underscoring the critical role of ANXA6 in maintaining glucose homeostasis under metabolic stress. During fasting, slightly reduced expression levels of alanine aminotransferase 2 (Gpt2) and lactate dehydrogenase (Ldha2), enzymes converting alanine to pyruvate, and the hepatic alanine transporter SNAT4 might contribute to these observations in the Anxa6 mice. These findings identify that ANXA6 deficiency causes an inability to maintain glycolytic metabolism under fasting conditions due to impaired alanine-dependent GNG.
维持恒定的血糖水平对于为依赖葡萄糖的组织提供能量至关重要。在进食状态下,胰岛素可降低升高的血糖水平,而在禁食状态下,胰高血糖素通过刺激肝脏进行脂肪酸氧化、糖原分解和糖异生(GNG)来维持血糖水平。肝脏在这些代谢适应过程中起着关键作用。GNG失调是2型糖尿病(T2DM)的一个标志,其由肝脏胰岛素抵抗、胰高血糖素水平升高和循环中游离脂肪酸过多所驱动。使用间接量热法、耐受性试验和生化分析,对8至12周龄的野生型(WT)和膜联蛋白A6敲除(Anxa6)小鼠在正常进食和禁食期间的葡萄糖代谢进行了分析。尽管Anxa6小鼠对葡萄糖水平具有正常的胰岛素敏感性控制且糖原动员有效,但在禁食期间仍会出现快速低血糖。这种代谢紊乱,尤其是在禁食早期,其特征是呼吸交换率(RER)较低,并且在白天期间脂质氧化增加,这表明由于低血糖而依赖脂质氧化。禁食期间胰高血糖素水平升高表明GNG存在缺陷。进一步分析表明,Anxa6小鼠无法利用丙氨酸进行肝脏GNG,这突出了禁食的Anxa6小鼠在葡萄糖-丙氨酸循环中的特定损伤,强调了膜联蛋白A6在代谢应激下维持葡萄糖稳态中的关键作用。在禁食期间,将丙氨酸转化为丙酮酸的酶——丙氨酸转氨酶2(Gpt2)和乳酸脱氢酶(Ldha2)以及肝脏丙氨酸转运体SNAT4的表达水平略有降低,这可能导致了Anxa6小鼠的这些观察结果。这些发现表明,膜联蛋白A6缺乏会导致在禁食条件下由于丙氨酸依赖性GNG受损而无法维持糖酵解代谢。