文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Research on prostate brachytherapy puncture control strategy based on adaptive PID control with FBG sensors.

作者信息

Li Jianqiao, Dai Xuesong, Li Peng

机构信息

Faculty of Engineering, Monash University, Melbourne, Australian.

Automation College, Wuxi University, Wuxi, China.

出版信息

PLoS One. 2025 Aug 13;20(8):e0329065. doi: 10.1371/journal.pone.0329065. eCollection 2025.


DOI:10.1371/journal.pone.0329065
PMID:40802812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349729/
Abstract

This paper enhances prostate brachytherapy robot accuracy by developing a needle deflection prediction model and a controlled puncturing strategy, addressing current challenges and trends. The study addresses the challenges in needle deflection prediction by proposing a correction force-based prediction model. The puncture control strategy comprises two phases: preoperative needle trajectory planning and intraoperative approach adjustment, both relying on corrective force. During operative adjustment, a model predicting and counteracting needle tip deflection ensures accurate corrective force application. An adaptive PID controller, utilizing Reinforcement Learning (RL), regulates corrective force for precise puncture accuracy. A dedicated experimental platform was constructed to validate the puncture control strategy for prostate seed implantation. The seed implantation's average error was 1.96 mm, with a standard error of 0.56 mm. Experiments show that correction force in the strategy significantly reduces tip deflection, enhancing seed implantation precision.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/aea02d9a71fe/pone.0329065.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/36aa08ab1c72/pone.0329065.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/7fac867a0f57/pone.0329065.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/a417e6bdfe4f/pone.0329065.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/eced312089c0/pone.0329065.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/e601822540bc/pone.0329065.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/214e2b2b822a/pone.0329065.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/9616c0fcbdb6/pone.0329065.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/37bbfc14e060/pone.0329065.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/c60889ed4e26/pone.0329065.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/c96ea43515c4/pone.0329065.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/7efe1bf25598/pone.0329065.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/a4e1273bb1bc/pone.0329065.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/6939859c79b9/pone.0329065.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/682b47b89642/pone.0329065.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/94290c7bc475/pone.0329065.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/8d2ec549777f/pone.0329065.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/a8f9767b12c6/pone.0329065.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/aea02d9a71fe/pone.0329065.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/36aa08ab1c72/pone.0329065.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/7fac867a0f57/pone.0329065.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/a417e6bdfe4f/pone.0329065.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/eced312089c0/pone.0329065.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/e601822540bc/pone.0329065.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/214e2b2b822a/pone.0329065.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/9616c0fcbdb6/pone.0329065.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/37bbfc14e060/pone.0329065.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/c60889ed4e26/pone.0329065.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/c96ea43515c4/pone.0329065.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/7efe1bf25598/pone.0329065.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/a4e1273bb1bc/pone.0329065.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/6939859c79b9/pone.0329065.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/682b47b89642/pone.0329065.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/94290c7bc475/pone.0329065.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/8d2ec549777f/pone.0329065.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/a8f9767b12c6/pone.0329065.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/12349729/aea02d9a71fe/pone.0329065.g018.jpg

相似文献

[1]
Research on prostate brachytherapy puncture control strategy based on adaptive PID control with FBG sensors.

PLoS One. 2025-8-13

[2]
Research on Prostate Brachytherapy Robot Design and Puncture Control Strategy.

Int J Med Robot. 2025-4

[3]
A needle deflection model with operating condition optimization for corrective force-based needle guidance during transrectal prostate brachytherapy.

Int J Med Robot. 2022-6

[4]
Semi-automatic puncture robotic system based on real-time multi-modal image fusion: preclinical evaluation.

Int J Comput Assist Radiol Surg. 2025-8-14

[5]
Data-driven adaptive needle insertion assist for transperineal prostate interventions.

Phys Med Biol. 2023-5-15

[6]
A systematic overview of radiation therapy effects in prostate cancer.

Acta Oncol. 2004

[7]
Large-scale convolutional neural network for clinical target and multi-organ segmentation in gynecologic brachytherapy via multi-stage learning.

Med Phys. 2025-8

[8]
Neural network dose prediction for cervical brachytherapy: Overcoming data scarcity for applicator-specific models.

Med Phys. 2024-7

[9]
Subsequent kilovoltage imaging-based fiducial triangulation for intra-fractional prostate motion monitoring and correction.

Med Phys. 2025-6

[10]
A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.

Med Phys. 2025-7

本文引用的文献

[1]
A novel simplified transperineal prostate biopsy guided by perineal ultrasound.

Br J Radiol. 2024-6-18

[2]
Low-dose-rate brachytherapy as a primary treatment for localised and locally advanced prostate cancer: a systematic review of economic evaluations.

Prostate Cancer Prostatic Dis. 2025-3

[3]
Optimization and experimental characterization of the innovative thermo-brachytherapy seed for prostate cancer treatment.

Med Phys. 2024-2

[4]
EMG-driven control in lower limb prostheses: a topic-based systematic review.

J Neuroeng Rehabil. 2022-5-7

[5]
Image-guided robots for low dose rate prostate brachytherapy: Perspectives on safety in design and use.

Int J Med Robot. 2021-6

[6]
A novel manipulator with needle insertion forces feedback for robot-assisted lumbar puncture.

Int J Med Robot. 2021-4

[7]
The challenging landscape of medical device approval in localized prostate cancer.

Nat Rev Urol. 2015-12-15

[8]
Needle Steering in 3-D Via Rapid Replanning.

IEEE Trans Robot. 2014-8

[9]
Mechanics of Flexible Needles Robotically Steered through Soft Tissue.

Int J Rob Res. 2010-11

[10]
Observations of needle-tissue interactions.

Annu Int Conf IEEE Eng Med Biol Soc. 2009

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索