一种用于宫颈癌高剂量率近距离放疗中施源器放置后CT自动轮廓勾画的新型网络架构。
A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.
作者信息
Lei Yang, Chao Ming, Yang Kaida, Gupta Vishal, Yoshida Emi J, Wang Tingyu, Yang Xiaofeng, Liu Tian
机构信息
Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Department of Radiation Oncology, University of California at San Francisco, San Francisco, California, USA.
出版信息
Med Phys. 2025 Jul;52(7):e17908. doi: 10.1002/mp.17908. Epub 2025 May 25.
BACKGROUND
High-dose-rate brachytherapy (HDR-BT) is an integral part of treatment for locally advanced cervical cancer, requiring accurate segmentation of the high-risk clinical target volume (HR-CTV) and organs at risk (OARs) on post-applicator CT (pCT) for precise and safe dose delivery. Manual contouring, however, is time-consuming and highly variable, with challenges heightened in cervical HDR-BT due to complex anatomy and low tissue contrast. An effective auto-contouring solution could significantly enhance efficiency, consistency, and accuracy in cervical HDR-BT planning.
PURPOSE
To develop a machine learning-based approach that improves the accuracy and efficiency of HR-CTV and OAR segmentation on pCT images for cervical HDR-BT.
METHODS
The proposed method employs two sequential deep learning models to segment target and OARs from planning CT data. The intuitive model, a U-Net, initially segments simpler structures such as the bladder and HR-CTV, utilizing shallow features and iodine contrast agents. Building on this, the sophisticated model targets complex structures like the sigmoid, rectum, and bowel, addressing challenges from low contrast, anatomical proximity, and imaging artifacts. This model incorporates spatial information from the intuitive model and uses total variation regularization to improve segmentation smoothness by applying a penalty to changes in gradient. This dual-model approach improves accuracy and consistency in segmenting high-risk clinical target volumes and organs at risk in cervical HDR-BT. To validate the proposed method, 32 cervical cancer patients treated with tandem and ovoid (T&O) HDR brachytherapy (3-5 fractions, 115 CT images) were retrospectively selected. The method's performance was assessed using four-fold cross-validation, comparing segmentation results to manual contours across five metrics: Dice similarity coefficient (DSC), 95% Hausdorff distance (HD), mean surface distance (MSD), center-of-mass distance (CMD), and volume difference (VD). Dosimetric evaluations included D90 for HR-CTV and D2cc for OARs.
RESULTS
The proposed method demonstrates high segmentation accuracy for HR-CTV, bladder, and rectum, achieving DSC values of 0.79 ± 0.06, 0.83 ± 0.10, and 0.76 ± 0.15, MSD values of 1.92 ± 0.77 mm, 2.24 ± 1.20 mm, and 4.18 ± 3.74 mm, and absolute VD values of 5.34 ± 4.85 cc, 17.16 ± 17.38 cc, and 18.54 ± 16.83 cc, respectively. Despite challenges in bowel and sigmoid segmentation due to poor soft tissue contrast in CT and variability in manual contouring (ground truth volumes of 128.48 ± 95.9 cc and 51.87 ± 40.67 cc), the method significantly outperforms two state-of-the-art methods on DSC, MSD, and CMD metrics (p-value < 0.05). For HR-CTV, the mean absolute D90 difference was 0.42 ± 1.17 Gy (p-value > 0.05), less than 5% of the prescription dose. Over 75% of cases showed changes within ± 0.5 Gy, and fewer than 10% exceeded ± 1 Gy. The mean and variation in structure volume and D2cc parameters between manual and segmented contours for OARs showed no significant differences (p-value > 0.05), with mean absolute D2cc differences within 0.5 Gy, except for the bladder, which exhibited higher variability (0.97 Gy).
CONCLUSION
Our innovative auto-contouring method showed promising results in segmenting HR-CTV and OARs from pCT, potentially enhancing the efficiency of HDR BT cervical treatment planning. Further validation and clinical implementation are required to fully realize its clinical benefits.
背景
高剂量率近距离放射治疗(HDR - BT)是局部晚期宫颈癌治疗的重要组成部分,需要在施源器后置CT(pCT)上准确分割高危临床靶区(HR - CTV)和危及器官(OARs),以实现精确且安全的剂量递送。然而,手动勾画轮廓既耗时又具有高度变异性,由于解剖结构复杂且组织对比度低,在宫颈癌HDR - BT中这些挑战更为突出。一种有效的自动勾画轮廓解决方案可以显著提高宫颈癌HDR - BT计划的效率、一致性和准确性。
目的
开发一种基于机器学习的方法,以提高宫颈癌HDR - BT的pCT图像上HR - CTV和OAR分割的准确性和效率。
方法
所提出的方法采用两个连续的深度学习模型从计划CT数据中分割靶区和OARs。直观模型是一个U - Net,最初利用浅层特征和碘造影剂分割膀胱和HR - CTV等较简单的结构。在此基础上,复杂模型针对乙状结肠、直肠和肠等复杂结构,应对低对比度、解剖结构相近和成像伪影带来的挑战。该模型整合了直观模型的空间信息,并通过对梯度变化施加惩罚来使用全变差正则化,以提高分割的平滑度。这种双模型方法提高了宫颈癌HDR - BT中高危临床靶区和危及器官分割的准确性和一致性。为验证所提出的方法,回顾性选择了32例接受串联和卵圆形(T&O)HDR近距离放射治疗(3 - 5次分割,115张CT图像)的宫颈癌患者。使用四折交叉验证评估该方法的性能,将分割结果与手动勾画轮廓在五个指标上进行比较:骰子相似系数(DSC)、95%豪斯多夫距离(HD)、平均表面距离(MSD)、质心距离(CMD)和体积差异(VD)。剂量学评估包括HR - CTV的D90和OARs的D2cc。
结果
所提出的方法在HR - CTV、膀胱和直肠的分割上显示出较高的准确性,DSC值分别为0.79±0.06、0.83±0.10和0.76±0.15,MSD值分别为1.92±0.77mm、2.24±1.20mm和4.18±3.74mm,绝对VD值分别为5.34±4.85cc、17.16±17.38cc和18.54±16.83cc。尽管由于CT中软组织对比度差和手动勾画轮廓的变异性(乙状结肠和肠的真实体积分别为128.48±95.9cc和51.87±40.67cc),在乙状结肠和肠的分割上存在挑战,但该方法在DSC、MSD和CMD指标上显著优于两种先进方法(p值<0.05)。对于HR - CTV,平均绝对D90差异为0.42±1.17Gy(p值>0.05),小于处方剂量的5%。超过75%的病例变化在±0.5Gy以内,少于10%的病例超过±1Gy。OARs的手动勾画轮廓和分割轮廓之间的结构体积和D2cc参数的平均值和变异性无显著差异(p值>0.05),平均绝对D2cc差异在0.5Gy以内,膀胱除外,其变异性较高(0.97Gy)。
结论
我们创新的自动勾画轮廓方法在从pCT中分割HR - CTV和OARs方面显示出有前景的结果,可能提高HDR BT宫颈癌治疗计划的效率。需要进一步验证和临床实施以充分实现其临床益处。