Suppr超能文献

前馈和反馈抑制在调节神经回路中θ-γ跨频率相互作用方面的作用。

The role of feedforward and feedback inhibition in modulating theta-gamma cross-frequency interactions in neural circuits.

作者信息

Chalkiadakis Dimitrios, Sánchez-Claros Jaime, López-Madrona Víctor J, Canals Santiago, Mirasso Claudio R

机构信息

Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.

Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus UIB, Palma de Mallorca, Spain.

出版信息

PLoS Comput Biol. 2025 Aug 13;21(8):e1013363. doi: 10.1371/journal.pcbi.1013363. eCollection 2025 Aug.

Abstract

Interactions among brain rhythms play a crucial role in organizing neuronal firing sequences during specific cognitive functions. In memory formation, the coupling between the phase of the theta rhythm and the amplitude of gamma oscillations has been extensively studied in the hippocampus. Prevailing perspectives suggest that the phase of the slower oscillation modulates the fast activity. However, recent metrics, such as Cross-Frequency Directionality (CFD), indicate that these electrophysiological interactions can be bidirectional. Using a computational model, we demonstrate that feedforward inhibition modeled by a theta-modulated ING (Interneuron Network Gamma) mechanism induces fast-to-slow interactions, while feedback inhibition through a theta-modulated PING (Pyramidal Interneuron Network Gamma) model drives slow-to-fast interactions. Importantly, in circuits combining both feedforward and feedback motifs, as commonly found experimentally, directionality is flexibly modulated by synaptic strength within biologically realistic ranges. A signature of this interaction is that fast-to-slow dominance in feedforward motifs is associated with gamma oscillations of higher frequency, and vice versa. Using previously acquired electrophysiological data from the hippocampus of rats freely navigating in a familiar environment or in a novel one, we show that CFD is dynamically regulated and linked to the frequency of the gamma band, as predicted by the model. Finally, the model attributes each theta-gamma interaction scheme, determined by the balance between feedforward and feedback inhibition, to distinct modes of information transmission and integration, adding computational flexibility. Our results offer a plausible neurobiological interpretation for cross-frequency directionality measurements associated with the activation of different underlying motifs that serve distinct computational needs.

摘要

脑节律之间的相互作用在特定认知功能期间组织神经元放电序列中起着关键作用。在记忆形成过程中,海马体中θ节律的相位与γ振荡的幅度之间的耦合已得到广泛研究。普遍观点认为,较慢振荡的相位调节快速活动。然而,最近的指标,如交叉频率方向性(CFD),表明这些电生理相互作用可以是双向的。使用计算模型,我们证明由θ调制的ING(中间神经元网络γ)机制建模的前馈抑制诱导快速到慢速的相互作用,而通过θ调制的PING(锥体中间神经元网络γ)模型的反馈抑制驱动慢速到快速的相互作用。重要的是,在实验中常见的同时结合前馈和反馈模式的电路中,方向性在生物学上现实的范围内由突触强度灵活调节。这种相互作用的一个特征是前馈模式中的快速到慢速主导与更高频率的γ振荡相关,反之亦然。使用先前从在熟悉环境或新环境中自由导航的大鼠海马体中获取的电生理数据,我们表明CFD如模型所预测的那样被动态调节并与γ波段的频率相关联。最后,该模型将由前馈和反馈抑制之间的平衡决定的每个θ-γ相互作用方案归因于不同的信息传输和整合模式,增加了计算灵活性。我们的结果为与服务于不同计算需求的不同潜在模式激活相关的交叉频率方向性测量提供了一个合理的神经生物学解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d77/12393765/efa3f39a86ac/pcbi.1013363.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验