Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
Neuron. 2023 Apr 5;111(7):936-953. doi: 10.1016/j.neuron.2023.02.026.
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
伽马振荡(∼30-150 Hz)是神经回路功能的广泛相关物。这些网络活动模式已在多种动物物种、脑结构和行为中得到描述,通常基于其频谱峰值频率进行识别。然而,尽管进行了深入的研究,但伽马振荡是否实现了特定脑功能的因果机制,或者是否代表了神经回路操作的一般动态模式仍然不清楚。在这个观点中,我们回顾了伽马振荡研究的最新进展,以期更深入地了解其细胞机制、神经通路和功能作用。我们讨论了特定的伽马节律本身并不执行任何特定的认知功能,而是构成了一种活动模式,报告了其产生的脑回路中信息处理的细胞基质、通信通道和计算操作。因此,我们建议将注意力从基于频率的定义转移到基于回路水平的伽马振荡定义。