Luo Xue, Xue Yingying, Xu Leilei, Lian Linshui, Wu Cai-E, Cui Yan, Zou Weixin, Dong Lin, Gao Fei, Chen Mindong
Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P.R. China.
College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China.
Inorg Chem. 2025 Aug 25;64(33):17027-17044. doi: 10.1021/acs.inorgchem.5c03079. Epub 2025 Aug 13.
This study presents a systematic investigation into the catalytic oxidation of toluene using metal-organic framework (MOF)-derived porous metal oxide catalysts obtained through controlled pyrolysis. The MOF-derived catalysts (MnO-BTC, CeO-BTC, CoO-BTC) demonstrated remarkable improvements in catalytic activity and stability compared to their commercial counterparts (MnO-c, CeO-c, CoO-c), achieving 90% toluene conversion () at significantly lower temperatures of 240 °C, 241 °C, and 237 °C, respectively. Besides, a comprehensive suite of characterization techniques was employed to elucidate the structure-activity relationships. Specifically, various traditional and characterization techniques, including X-ray diffraction (XRD), N physisorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), H programmed reduction (H-TPR), thermogravimetry-mass spectrometry ( TG-MS), and diffuse reflectance infrared Fourier transform spectroscopy ( DRIFTS), were employed to elucidate crystallinity, porosity, morphology analysis, probe surface chemistry, redox properties, real-time tracking of thermal decomposition, and reaction mechanisms during the catalytic oxidation of toluene. It was found that the enhanced catalytic performance could be attributed to the synergistic effects of a high surface area, well-dispersed active sites, and abundant oxygen vacancies. These insights provided fundamental insights into the design and optimization of MOF-derived catalysts for efficient volatile organic compounds (VOCs) abatement in environmental catalysis.
本研究对通过可控热解获得的金属有机框架(MOF)衍生的多孔金属氧化物催化剂催化氧化甲苯进行了系统研究。与市售催化剂(MnO-c、CeO-c、CoO-c)相比,MOF衍生的催化剂(MnO-BTC、CeO-BTC、CoO-BTC)在催化活性和稳定性方面有显著提高,分别在240℃、241℃和237℃的显著更低温度下实现了90%的甲苯转化率()。此外,采用了一系列综合表征技术来阐明结构-活性关系。具体而言,使用了各种传统和表征技术,包括X射线衍射(XRD)、N物理吸附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、H程序升温还原(H-TPR)、热重-质谱联用(TG-MS)和漫反射红外傅里叶变换光谱(DRIFTS),以阐明甲苯催化氧化过程中的结晶度、孔隙率、形态分析、探针表面化学、氧化还原性质、热分解实时跟踪和反应机理。研究发现,催化性能的提高可归因于高比表面积、活性位点分散良好和氧空位丰富的协同效应。这些见解为设计和优化用于环境催化中高效挥发性有机化合物(VOCs)减排的MOF衍生催化剂提供了基本认识。