Shamsuddin Mohd Razali, Teo Siow Hwa, Azmi Tengku Sharifah Marliza Tengku, Lahuri Azizul Hakim, Taufiq-Yap Yun Hin
Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
Environ Sci Pollut Res Int. 2024 Apr 18. doi: 10.1007/s11356-024-33325-7.
Alkali sludge (AS) is waste abundantly generated from solar photovoltaic (PV) solar cell industries. Since this potential basic material is still underutilized, a combination with NiO catalyst might greatly influence coke resentence, especially in high-temperature thermochemical reactions (Arora and Prasad, RSC Adv. 6:108,668-108688, 2016). This paper investigated alkaline sludge containing 3CaO-2SiO doped with well-known NiO to enhance the dry reforming of methane (DRM) reaction. The wet-impregnation method was used to prepare the xNiO/AS (x = 5-15%) catalysts. Subsequently, all catalysts were tested by using X-ray diffraction (XRD), nitrogen adsorption/desorption (BET), temperature-programmed reduction of hydrogen (H-TPR), temperature-programmed desorption of carbon dioxide (TPD-CO), field emission scanning electron microscopy (FESEM-EDX), and X-ray photoelectron spectroscopy (XPS). The spent catalysts were analyzed by thermogravimetric analysis (TGA/DTG), transmission electron microscopy (TEM), and temperature-programmed oxidation (TPO). The catalytic performance of xNiO/AS catalysts was investigated in a fixed bed reactor connected with gas chromatography thermal conductivity detector (GC-TCD) at a CH:CO flow rate of 30 mL during a 10-h reaction by following (Shamsuddin et al., Int. J. Energy Res. 45:15,463-15,480, 2021d). For optimization parameters, the effects of NiO concentration (5, 10, and 15%), reaction temperature (700, 750, 800, 850, and 900 °C), catalyst loading (0.1, 0.2, 0.3, 0.4, and 0.5 g), and gas hourly space velocity (GHSV) range from 3000, 6000, 9000, 12,000, and 15,000 h were evaluated. The results showed that physical characteristics such as BET surface area and porosity do not significantly impact NiO percentages of dispersion, whereas chemical characteristics like reducibility are crucial for the catalysts' efficient catalytic activity. Due to the active sites on the catalyst surface being more accessible, increased NiO dispersion resulted in higher reactant conversion. The catalytic performance on various parameters that showed 15%NiO/AS exhibited high reactant conversion up to 98% and 40-60% product selectivity in 700 °C, 0.2 g catalyst loading, and 12,000 h GHSV. According to spent catalyst analyses, the catalyst was stable even after the DRM reaction. Meanwhile, increased reducibility resulted in more and better active site formation on the catalyst. Synergetic effect of efficient NiO as active metal and medium basic sites from AS enhanced DRM catalytic activity and stability with low coke formation.
碱渣(AS)是太阳能光伏(PV)太阳能电池行业大量产生的废弃物。由于这种潜在的基础材料仍未得到充分利用,与NiO催化剂结合可能会极大地影响积炭情况,特别是在高温热化学反应中(Arora和Prasad,《皇家化学学会进展》6:108668 - 108688,2016年)。本文研究了掺杂著名的NiO的3CaO - 2SiO碱渣,以增强甲烷干重整(DRM)反应。采用湿浸渍法制备了xNiO/AS(x = 5 - 15%)催化剂。随后,使用X射线衍射(XRD)、氮吸附/脱附(BET)、氢气程序升温还原(H - TPR)、二氧化碳程序升温脱附(TPD - CO)、场发射扫描电子显微镜(FESEM - EDX)和X射线光电子能谱(XPS)对所有催化剂进行了测试。通过热重分析(TGA/DTG)、透射电子显微镜(TEM)和程序升温氧化(TPO)对失活催化剂进行了分析。在与气相色谱热导检测器(GC - TCD)相连的固定床反应器中,按照(Shamsuddin等人,《国际能源研究杂志》45:15463 - 15480,2021d)的方法,在10小时反应过程中,以30 mL的CH:CO流速研究了xNiO/AS催化剂的催化性能。对于优化参数,评估了NiO浓度(5%、10%和15%)、反应温度(700、750、800、850和900℃)、催化剂负载量(0.1、0.2、0.3、0.4和0.5 g)以及气体时空速(GHSV)范围为3000、6000、9000、12000和15000 h的影响。结果表明,诸如BET表面积和孔隙率等物理特性对NiO的分散百分比没有显著影响,而诸如还原性等化学特性对于催化剂的高效催化活性至关重要。由于催化剂表面的活性位点更易于接近,NiO分散度的提高导致反应物转化率更高。在700℃、0.2 g催化剂负载量和12000 h GHSV条件下,各种参数的催化性能表明15%NiO/AS表现出高达98%的高反应物转化率和40 - 60%的产物选择性。根据失活催化剂分析,即使在DRM反应后催化剂仍保持稳定。同时,还原性的提高导致催化剂上形成更多且更好的活性位点。高效的NiO作为活性金属与AS中的中等碱性位点的协同作用增强了DRM催化活性和稳定性,并减少了积炭形成。
Environ Sci Pollut Res Int. 2024-4-18
ACS Appl Mater Interfaces. 2022-7-12
Environ Sci Pollut Res Int. 2025-7
Environ Sci Technol. 2025-6-24