文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

HRAS 突变型头颈部鳞状细胞癌的免疫格局

The immunologic landscape of HRAS-mutant head and neck squamous-cell carcinoma.

作者信息

Economopoulou P, Rampias T, Spathis A, Kotsantis I, Kyriazoglou A, Anastasiou M, Pantazopoulos A, Gomatou G, Margeli A, Papageorgiou M, Foukas P, Psyrri A

机构信息

Oncology Unit, 2nd Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Haidari, Greece.

Biomedical Research Foundation Academy of Athens, Athens, Greece.

出版信息

ESMO Open. 2025 Aug 12;10(8):105538. doi: 10.1016/j.esmoop.2025.105538.


DOI:10.1016/j.esmoop.2025.105538
PMID:40803018
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12361755/
Abstract

BACKGROUND: HRAS mutations define a distinct biologic subset of head and neck squamous-cell carcinoma (HNSCC). There are limited data regarding HRAS-mutant (mut) tumors' sensitivity to immunotherapy. We sought to evaluate the mutational landscape and transcriptional profile, as well as analyze the tumor microenvironment (TME) of HRAS-mut tumors to provide the conceptual framework for combinatorial treatment approaches. MATERIALS AND METHODS: We analyzed mutational and transcriptome data from The Cancer Genome Atlas (TCGA). In addition, genomic DNA from baseline tumor biopsies was targeted for sequencing. Our study included 10 patients with HRAS-mut and 40 with HRAS-wild-type (WT) HNSCC. Programmed death-ligand 1 (PD-L1) expression in formalin-fixed paraffin-embedded tumor samples was assessed using the PD-L1 IHC 22C3 pharmDx assay. We characterized subpopulations of exhausted CD8(+) T cells by measuring the expression of T-cell factor-1 (TCF1) and programmed cell death protein 1 (PD-1) in both the center and the periphery of the tumors using multiplex immunohistochemistry, followed by analysis using a manually trained algorithm in QuPath software. RESULTS: The analysis of TCGA HNSCC mutation and mRNA expression data demonstrated that 6% of HNSCCs harbor mutant HRAS. Transcriptome analysis showed that HRAS-mut HNSCCs are infiltrated by immune cells (CD8A, CD8B, CD2) and have higher expression levels of CXCL11, CXCL10, CXCL9 and CCL4 chemokines. Moreover, the percentage of HRAS-mut samples increased in higher PD-L1 score groups (11% versus 20% versus 100% in tumor positive scores <1%, 1%-49% and ≥50%, respectively, P = 0.006). The analysis of TME showed that HRAS-mut tumors have a statistically significant higher number of total immune cells (5123.17/mm versus 3527.93/mm, P = 0.002) and a higher percentage of pre-exhausted CD8(+) PD-1(+) TCF1(+) T cells in the periphery (384.67/mm versus 51.18/mm, P = 0.040) than HRAS-WT tumors. CONCLUSIONS: HRAS-mut HNSCCs are characterized by a significantly increased number of pre-exhausted PD-1(+) TCF1(+) T cells and PD-L1 expression, suggesting a potential sensitivity to immunotherapy.

摘要

背景:HRAS 突变定义了头颈部鳞状细胞癌(HNSCC)的一个独特生物学亚群。关于 HRAS 突变(mut)肿瘤对免疫疗法的敏感性数据有限。我们试图评估 mut 肿瘤的突变图谱和转录谱,并分析其肿瘤微环境(TME),以为联合治疗方法提供概念框架。 材料与方法:我们分析了来自癌症基因组图谱(TCGA)的突变和转录组数据。此外,对基线肿瘤活检组织的基因组 DNA 进行靶向测序。我们的研究纳入了 10 例 HRAS 突变型和 40 例 HRAS 野生型(WT)HNSCC 患者。使用 PD-L1 IHC 22C3 免疫组化检测法评估福尔马林固定石蜡包埋肿瘤样本中程序性死亡配体 1(PD-L1)的表达。我们通过使用多重免疫组化测量肿瘤中心和周边 T 细胞转录因子 1(TCF1)和程序性细胞死亡蛋白 1(PD-1)的表达来表征耗竭性 CD8(+) T 细胞亚群,随后使用 QuPath 软件中的手动训练算法进行分析。 结果:对 TCGA HNSCC 突变和 mRNA 表达数据的分析表明,6%的 HNSCC 携带突变型 HRAS。转录组分析显示,HRAS 突变型 HNSCC 被免疫细胞(CD8A、CD8B、CD2)浸润,并且 CXCL11、CXCL10、CXCL9 和 CCL4 趋化因子的表达水平更高。此外,在较高 PD-L1 评分组中,HRAS 突变样本的百分比增加(肿瘤阳性评分<1%、1%-49%和≥50%时分别为 11%、20%和 100%,P = 0.006)。对 TME 的分析表明,与 HRAS 野生型肿瘤相比,HRAS 突变型肿瘤的总免疫细胞数量在统计学上显著更高(分别为 5123.17/mm 和 3527.93/mm,P = 0.002),并且周边预耗竭的 CD8(+) PD-1(+) TCF1(+) T 细胞百分比更高(分别为 384.67/mm 和 51.18/mm,P = 0.040)。 结论:HRAS 突变型 HNSCC 的特征是预耗竭的 PD-1(+) TCF1(+) T 细胞数量和 PD-L1 表达显著增加,提示对免疫疗法可能敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/e15a67b0275e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/ebbfde2aaf53/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/b23446f637b1/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/95cbbff4109c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/17c18e84b78c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/e15a67b0275e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/ebbfde2aaf53/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/b23446f637b1/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/95cbbff4109c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/17c18e84b78c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f50/12361755/e15a67b0275e/gr5.jpg

相似文献

[1]
The immunologic landscape of HRAS-mutant head and neck squamous-cell carcinoma.

ESMO Open. 2025-8-12

[2]
Spatial Transcriptome Analysis of B7-H4 in Head and Neck Squamous Cell Carcinoma: A Novel Therapeutic Target for Anti-Immune Checkpoint Inhibitors.

Head Neck Pathol. 2025-6-30

[3]
MHC class I upregulation contributes to the therapeutic response to radiotherapy in combination with anti-PD-L1/anti-TGF-β in squamous cell carcinomas with enhanced CD8 T cell memory-driven response.

Cancer Lett. 2025-1-1

[4]
Mapping immune activity in HPV-negative head and neck squamous cell carcinoma: a spatial multiomics analysis.

J Immunother Cancer. 2025-6-25

[5]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[6]
Anti-PD1 prolongs the response of PI3K and farnesyl transferase inhibition in HRAS- and PIK3CA-mutant head and neck cancers.

Neoplasia. 2025-5

[7]
Tumor-Specific MHC-II Activates CD4+ and CD8+ T Cells in Head and Neck Squamous Cell Carcinoma to Boost Immunotherapy Efficacy.

Cancer Res. 2025-9-2

[8]
Regulation of nucleotide excision repair by wild-type HRAS signaling in head and neck cancer.

Cancer Gene Ther. 2025-4-12

[9]
A novel mast cell marker gene-related prognostic signature to predict prognosis and reveal the immune landscape in head and neck squamous cell carcinoma.

Front Immunol. 2025-7-9

[10]
Differential tumor immune microenvironment coupled with tumor progression or tumor eradication in HPV-antigen expressing squamous cell carcinoma (SCC) models.

Front Immunol. 2024

本文引用的文献

[1]
The Genomic, Transcriptomic, and Immunologic Landscape of Mutations in Solid Tumors.

Cancers (Basel). 2024-4-19

[2]
Mutations Define a Distinct Subgroup in Head and Neck Squamous Cell Carcinoma.

JCO Precis Oncol. 2023-1

[3]
Pembrolizumab With or Without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study.

J Clin Oncol. 2023-2-1

[4]
The primordial differentiation of tumor-specific memory CD8 T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes.

Cell. 2022-10-27

[5]
Potential of Farnesyl Transferase Inhibitors in Combination Regimens in Squamous Cell Carcinomas.

Cancers (Basel). 2021-10-22

[6]
Head and neck cancer.

Lancet. 2021-12-18

[7]
Is This the Dawn of Precision Oncology in Head and Neck Cancer?

J Clin Oncol. 2021-6-10

[8]
Tipifarnib in Head and Neck Squamous Cell Carcinoma With Mutations.

J Clin Oncol. 2021-6-10

[9]
The Significance of Mitochondrial Dysfunction in Cancer.

Int J Mol Sci. 2020-8-5

[10]
Tipifarnib as a Precision Therapy for -Mutant Head and Neck Squamous Cell Carcinomas.

Mol Cancer Ther. 2020-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索