Kawai Yasuyuki, Yamamoto Koji, Tsuruta Keisuke, Miyazaki Keita, Asai Hideki, Fukushima Hidetada
Department of Emergency and Critical Care Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan.
Sci Rep. 2025 Aug 13;15(1):29697. doi: 10.1038/s41598-025-15160-z.
This study aimed to determine if an ensemble (stacking) model that integrates three independently developed base models can reliably predict patients' neurological outcomes following out-of-hospital cardiac arrest (OHCA) within 3 h of arrival and outperform each individual model. This retrospective study included patients with OHCA (≥ 18 years) admitted directly to Nara Medical University between April 2015 and March 2024 who remained comatose for ≥ 3 h after arrival and had suitable head computed tomography (CT) images. The area under the receiver operating characteristic curve (AUC) and Briers scores were used to evaluate the performance of four models (resuscitation-related background OHCA score factors, bilateral pupil diameter, single-slice head CT within 3 h of arrival, and an ensemble stacked model combining these three models) in predicting favourable neurological outcomes at hospital discharge or 1 month, as defined by a Cerebral Performance Category scale of 1-2. Among 533 patients, 82 (15%) had favourable outcomes. The OHCA, pupil, and head CT models yielded AUCs of 0.76, 0.65, and 0.68 with Brier scores of 0.11, 0.13, and 0.12, respectively. The ensemble model outperformed the other models (AUC, 0.82; Brier score, 0.10), thereby supporting its application for early clinical decision-making and optimising resource allocation.
本研究旨在确定一种整合了三个独立开发的基础模型的集成(堆叠)模型能否可靠地预测院外心脏骤停(OHCA)患者在到达后3小时内的神经学预后,并且其表现优于每个单独的模型。这项回顾性研究纳入了2015年4月至2024年3月期间直接入住奈良医科大学的OHCA患者(≥18岁),这些患者在到达后昏迷≥3小时且有合适的头部计算机断层扫描(CT)图像。采用受试者操作特征曲线下面积(AUC)和布里尔评分来评估四种模型(复苏相关背景OHCA评分因素、双侧瞳孔直径、到达后3小时内的单层头部CT以及结合这三种模型的集成堆叠模型)在预测出院时或1个月时良好神经学预后方面的表现,良好神经学预后定义为脑功能分类量表评分为1 - 2。在533例患者中,82例(15%)有良好预后。OHCA、瞳孔和头部CT模型的AUC分别为0.76、0.65和0.68,布里尔评分分别为0.11、0.13和0.12。集成模型的表现优于其他模型(AUC为0.82;布里尔评分为0.10),从而支持其用于早期临床决策和优化资源分配。