Suppr超能文献

FDRL:一种利用传统和常规土壤特征预测喜马拉雅山脉沉降速度的数据驱动算法。

FDRL: a data-driven algorithm for forecasting subsidence velocities in Himalayas using conventional and traditional soil features.

作者信息

Sankhyan Sahil, Kumar Ajoy, Kumar Praveen, Sharma Aaditya, Uday K V, Dutt Varun

机构信息

ACS Lab, Indian Institute of Technology Mandi, Kamand, India.

Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India.

出版信息

Sci Rep. 2025 Aug 13;15(1):29742. doi: 10.1038/s41598-025-12932-5.

Abstract

Landslides are a frequent geohazard within the Himalayas, threatening human lives, infrastructure, and indigenous economies. Traditional subsidence velocity forecasting models, however, typically rely on either satellite remote sensing data or geotechnical parameters in isolation, which limits their predictive power and applicability. This work bridges this gap by suggesting an interpretable data-driven model that systematically integrates traditional soil information with geotechnical features for improved prediction. A stacking ensemble regression model called Forecasting Data-Driven Regression Learning (FDRL) was developed on the basis of the last machine learning breakthroughs, including feature selection techniques such as Pearson correlation and mutual information scores. The model combined both quantitative variables (e.g., specific gravity and plasticity index) and qualitative indicators based on conventional soil evaluation procedures (e.g., water retention, odor, and soil color). The FDRL model outperformed baseline regression models with a training Root Mean Squared Error (RMSE) of 1.11 mm/year and a test RMSE of 1.32 mm/year. Explainability analysis with SHAP showed that geotechnical as well as traditional soil characteristics significantly contributed to model predictions, confirming the utility of this hybrid combination. By demonstrating the explanatory potential of traditional soil indicators, typically excluded from scientific models, this study bridges local knowledge systems with modern data science. The method provides a scalable, interpretable, and locally implementable approach to early warning of slope creep and long-term deformation trends, facilitating proactive landslide risk management.

摘要

山体滑坡是喜马拉雅山脉常见的地质灾害,威胁着人类生命、基础设施和当地经济。然而,传统的沉降速度预测模型通常要么单独依赖卫星遥感数据,要么单独依赖岩土参数,这限制了它们的预测能力和适用性。这项工作通过提出一种可解释的数据驱动模型来弥补这一差距,该模型系统地将传统土壤信息与岩土特征相结合,以改进预测。基于包括Pearson相关性和互信息分数等特征选择技术在内的最新机器学习突破,开发了一种名为预测数据驱动回归学习(FDRL)的堆叠集成回归模型。该模型结合了定量变量(如比重和塑性指数)和基于传统土壤评估程序的定性指标(如水保持性、气味和土壤颜色)。FDRL模型优于基线回归模型,训练均方根误差(RMSE)为1.11毫米/年,测试RMSE为1.32毫米/年。使用SHAP进行的可解释性分析表明,岩土特征以及传统土壤特征对模型预测有显著贡献,证实了这种混合组合的实用性。通过展示通常被科学模型排除在外的传统土壤指标的解释潜力,本研究将当地知识系统与现代数据科学联系起来。该方法为边坡蠕变和长期变形趋势的早期预警提供了一种可扩展、可解释且可在当地实施的方法,有助于积极的滑坡风险管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验