Suppr超能文献

一种用于颈椎前纵韧带损伤的预测性列线图。 (你提供的原文中“predictiament injuryve”可能有误,推测正确表述可能是“predictive injury” )

A predictiament injuryve nomogram for cervical anterior longitudinal ligament injury.

作者信息

Li Yang, Zhang Dongxiao, Liu Yishan, Gao Zhongya, Zhang Bangke, Lu Xuhua

机构信息

University of Shanghai for Science and Technology, Shanghai, China.

Shanghai Changzheng Hospital, Shanghai, China.

出版信息

Eur Spine J. 2025 Aug 14. doi: 10.1007/s00586-025-09162-8.

Abstract

OBJECTIVE

To develop a nomogram-based predictive model for anterior longitudinal ligament (ALL) injury caused by cervical spine trauma.

METHODS

A total of 256 patients with cervical hyperextension injuries were included in this study. Univariate and multivariable logistic regression analyses were used to select the predictive variables, and subsequently, a nomogram model was developed. Finally, the model was validated using both the training and validation datasets.

RESULTS

The nomogram model included five predictive factors: thickness of prevertebral soft tissue (TOPST), intervertebral disk angle (IDA), avulsion fracture of the anterior edge of the vertebral body (AFOA), ALL disruption observed in T1-weighted sequence (T1D), and high signal intensity in T2-weighted sequence (T2HS). The areas under the curve (AUC) for the training and validation sets were 0.986 and 0.987, respectively. The calibration curves for both the training and validation sets showed slopes close to 1, indicating good calibration. Decision curve analysis demonstrated that the model performed well and was feasible for making beneficial clinical decisions.

CONCLUSIONS

The nomogram model based on TOPST, IDA, AFOA, T1D, and T2HS is a reliable tool for predicting cervical ALL injury.

摘要

目的

建立基于列线图的颈椎创伤致前纵韧带(ALL)损伤预测模型。

方法

本研究纳入256例颈椎过伸伤患者。采用单因素和多因素逻辑回归分析筛选预测变量,随后建立列线图模型。最后,使用训练集和验证集对模型进行验证。

结果

列线图模型包括五个预测因素:椎体前软组织厚度(TOPST)、椎间盘角度(IDA)、椎体前缘撕脱骨折(AFOA)、T1加权序列中观察到的ALL中断(T1D)和T2加权序列中的高信号强度(T2HS)。训练集和验证集的曲线下面积(AUC)分别为0.986和0.987。训练集和验证集的校准曲线斜率均接近1,表明校准良好。决策曲线分析表明,该模型性能良好,对于做出有益的临床决策是可行的。

结论

基于TOPST、IDA、AFOA、T1D和T2HS的列线图模型是预测颈椎ALL损伤的可靠工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验