文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

细菌大战:人工智能在脓毒症管理中卷土重来

Bug Wars: Artificial Intelligence Strikes Back in Sepsis Management.

作者信息

Barkas Georgios I, Dimeas Ilias E, Kotsiou Ourania S

机构信息

Laboratory of Human Pathophysiology, Department of Nursing, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.

Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.

出版信息

Diagnostics (Basel). 2025 Jul 28;15(15):1890. doi: 10.3390/diagnostics15151890.


DOI:10.3390/diagnostics15151890
PMID:40804855
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12345688/
Abstract

Sepsis remains a leading global cause of mortality, with delayed recognition and empirical antibiotic overuse fueling poor outcomes and rising antimicrobial resistance. This systematic scoping review evaluates the current landscape of artificial intelligence (AI) and machine learning (ML) applications in sepsis care, focusing on early detection, personalized antibiotic management, and resistance forecasting. Literature from 2019 to 2025 was systematically reviewed following PRISMA-ScR guidelines. A total of 129 full-text articles were analyzed, with study quality assessed via the JBI and QUADAS-2 tools. AI-based models demonstrated robust predictive performance for early sepsis detection (AUROC 0.68-0.99), antibiotic stewardship, and resistance prediction. Notable tools, such as InSight and KI.SEP, leveraged multimodal clinical and biomarker data to provide actionable, real-time support and facilitate timely interventions. AI-driven platforms showed potential to reduce inappropriate antibiotic use and nephrotoxicity while optimizing outcomes. However, most models are limited by single-center data, variable interpretability, and insufficient real-world validation. Key challenges remain regarding data integration, algorithmic bias, and ethical implementation. Future research should prioritize multicenter validation, seamless integration with clinical workflows, and robust ethical frameworks to ensure safe, equitable, and effective adoption. AI and ML hold significant promise to transform sepsis management, but their clinical impact depends on transparent, validated, and user-centered deployment.

摘要

脓毒症仍然是全球主要的死亡原因,识别延迟和经验性抗生素过度使用导致了不良后果,并加剧了抗菌药物耐药性。本系统综述评估了人工智能(AI)和机器学习(ML)在脓毒症护理中的应用现状,重点关注早期检测、个性化抗生素管理和耐药性预测。按照PRISMA-ScR指南对2019年至2025年的文献进行了系统综述。共分析了129篇全文文章,并通过JBI和QUADAS-2工具评估了研究质量。基于AI的模型在早期脓毒症检测(受试者工作特征曲线下面积为0.68-0.99)、抗生素管理和耐药性预测方面表现出强大的预测性能。InSight和KI.SEP等著名工具利用多模式临床和生物标志物数据提供可操作的实时支持,并促进及时干预。人工智能驱动的平台显示出在减少不适当抗生素使用和肾毒性的同时优化治疗结果的潜力。然而,大多数模型受到单中心数据、可变的可解释性和不足的真实世界验证的限制。在数据整合、算法偏差和道德实施方面仍然存在关键挑战。未来的研究应优先进行多中心验证、与临床工作流程的无缝整合以及强大的道德框架,以确保安全、公平和有效地采用。人工智能和机器学习在改变脓毒症管理方面具有巨大潜力,但其临床影响取决于透明、经过验证且以用户为中心的部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8db/12345688/8d465b88743d/diagnostics-15-01890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8db/12345688/51356c8ac744/diagnostics-15-01890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8db/12345688/8d465b88743d/diagnostics-15-01890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8db/12345688/51356c8ac744/diagnostics-15-01890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8db/12345688/8d465b88743d/diagnostics-15-01890-g002.jpg

相似文献

[1]
Bug Wars: Artificial Intelligence Strikes Back in Sepsis Management.

Diagnostics (Basel). 2025-7-28

[2]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Artificial intelligence-driven approaches in antibiotic stewardship programs and optimizing prescription practices: A systematic review.

Artif Intell Med. 2025-4

[5]
The Use of Machine Learning for Analyzing Real-World Data in Disease Prediction and Management: Systematic Review.

JMIR Med Inform. 2025-6-19

[6]
The Role of AI in Nursing Education and Practice: Umbrella Review.

J Med Internet Res. 2025-4-4

[7]
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.

Cochrane Database Syst Rev. 2014-4-29

[8]
Advances in diagnosis and prognosis of bacteraemia, bloodstream infection, and sepsis using machine learning: A comprehensive living literature review.

Artif Intell Med. 2025-2

[9]
Implementing AI in Hospitals to Achieve a Learning Health System: Systematic Review of Current Enablers and Barriers.

J Med Internet Res. 2024-8-2

[10]
Trust in Artificial Intelligence-Based Clinical Decision Support Systems Among Health Care Workers: Systematic Review.

J Med Internet Res. 2025-7-29

本文引用的文献

[1]
Validation of an artificial intelligence-based algorithm for predictive performance and risk stratification of sepsis using real-world data from hospitalised patients: a prospective observational study.

BMJ Health Care Inform. 2025-6-20

[2]
Sepsis as a cause of death among elderly cancer patients: an updated SEER database analysis 2000-2021.

Ann Med Surg (Lond). 2025-3-27

[3]
SERS-ATB: A comprehensive database server for antibiotic SERS spectral visualization and deep-learning identification.

Environ Pollut. 2025-5-15

[4]
Interpretable machine learning model for early morbidity risk prediction in patients with sepsis-induced coagulopathy: a multi-center study.

Front Immunol. 2025-3-3

[5]
An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis.

JMIR Hum Factors. 2025-3-4

[6]
Complete Blood Count and Monocyte Distribution Width-Based Machine Learning Algorithms for Sepsis Detection: Multicentric Development and External Validation Study.

J Med Internet Res. 2025-2-26

[7]
Predicting appropriateness of antibiotic treatment among ICU patients with hospital-acquired infection.

NPJ Digit Med. 2025-2-6

[8]
An Easy and Quick Risk-Stratified Early Forewarning Model for Septic Shock in the Intensive Care Unit: Development, Validation, and Interpretation Study.

J Med Internet Res. 2025-2-6

[9]
Knowledge, attitudes, and practices among physicians and pharmacists toward antibiotic use in sepsis.

Front Med (Lausanne). 2025-1-15

[10]
Development and validation of a novel risk-predicted model for early sepsis-associated acute kidney injury in critically ill patients: a retrospective cohort study.

BMJ Open. 2025-1-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索