Barkas Georgios I, Dimeas Ilias E, Kotsiou Ourania S
Laboratory of Human Pathophysiology, Department of Nursing, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.
Diagnostics (Basel). 2025 Jul 28;15(15):1890. doi: 10.3390/diagnostics15151890.
Sepsis remains a leading global cause of mortality, with delayed recognition and empirical antibiotic overuse fueling poor outcomes and rising antimicrobial resistance. This systematic scoping review evaluates the current landscape of artificial intelligence (AI) and machine learning (ML) applications in sepsis care, focusing on early detection, personalized antibiotic management, and resistance forecasting. Literature from 2019 to 2025 was systematically reviewed following PRISMA-ScR guidelines. A total of 129 full-text articles were analyzed, with study quality assessed via the JBI and QUADAS-2 tools. AI-based models demonstrated robust predictive performance for early sepsis detection (AUROC 0.68-0.99), antibiotic stewardship, and resistance prediction. Notable tools, such as InSight and KI.SEP, leveraged multimodal clinical and biomarker data to provide actionable, real-time support and facilitate timely interventions. AI-driven platforms showed potential to reduce inappropriate antibiotic use and nephrotoxicity while optimizing outcomes. However, most models are limited by single-center data, variable interpretability, and insufficient real-world validation. Key challenges remain regarding data integration, algorithmic bias, and ethical implementation. Future research should prioritize multicenter validation, seamless integration with clinical workflows, and robust ethical frameworks to ensure safe, equitable, and effective adoption. AI and ML hold significant promise to transform sepsis management, but their clinical impact depends on transparent, validated, and user-centered deployment.
脓毒症仍然是全球主要的死亡原因,识别延迟和经验性抗生素过度使用导致了不良后果,并加剧了抗菌药物耐药性。本系统综述评估了人工智能(AI)和机器学习(ML)在脓毒症护理中的应用现状,重点关注早期检测、个性化抗生素管理和耐药性预测。按照PRISMA-ScR指南对2019年至2025年的文献进行了系统综述。共分析了129篇全文文章,并通过JBI和QUADAS-2工具评估了研究质量。基于AI的模型在早期脓毒症检测(受试者工作特征曲线下面积为0.68-0.99)、抗生素管理和耐药性预测方面表现出强大的预测性能。InSight和KI.SEP等著名工具利用多模式临床和生物标志物数据提供可操作的实时支持,并促进及时干预。人工智能驱动的平台显示出在减少不适当抗生素使用和肾毒性的同时优化治疗结果的潜力。然而,大多数模型受到单中心数据、可变的可解释性和不足的真实世界验证的限制。在数据整合、算法偏差和道德实施方面仍然存在关键挑战。未来的研究应优先进行多中心验证、与临床工作流程的无缝整合以及强大的道德框架,以确保安全、公平和有效地采用。人工智能和机器学习在改变脓毒症管理方面具有巨大潜力,但其临床影响取决于透明、经过验证且以用户为中心的部署。
Diagnostics (Basel). 2025-7-28
J Med Internet Res. 2025-6-23
J Med Internet Res. 2025-4-4
Cochrane Database Syst Rev. 2014-4-29
Ann Med Surg (Lond). 2025-3-27
Front Med (Lausanne). 2025-1-15