文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的HER2低表达乳腺癌复发预测:单纯MRI、单纯临床病理及联合模型的比较

Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models.

作者信息

Choi Seoyun, Lee Youngmi, Lee Minwoo, Byon Jung Hee, Choi Eun Jung

机构信息

Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea.

Department of Statistics, Institute of Applied Statistics, Jeonbuk National University, Jeonju 54896, Republic of Korea.

出版信息

Diagnostics (Basel). 2025 Jul 29;15(15):1895. doi: 10.3390/diagnostics15151895.


DOI:10.3390/diagnostics15151895
PMID:40804859
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12346550/
Abstract

To develop a DL-based model predicting recurrence risk in HER2-low breast cancer patients and to compare performance of the MRI-alone, clinicopathologic-alone, and combined models. We analyzed 453 patients with HER2-low breast cancer who underwent surgery and preoperative breast MRI between May 2018 and April 2022. Patients were randomly assigned to either a training cohort ( = 331) or a test cohort ( = 122). Imaging features were extracted from DCE-MRI and ADC maps, with regions of interest manually annotated by radiologists. Clinicopathological features included tumor size, nodal status, histological grade, and hormone receptor status. Three DL prediction models were developed: a CNN-based MRI-alone model, a clinicopathologic-alone model based on a multi-layer perceptron (MLP) and a combined model integrating CNN-extracted MRI features with clinicopathological data via MLP. Model performance was evaluated using AUC, sensitivity, specificity, and F1-score. The MRI-alone model achieved an AUC of 0.69 (95% CI, 0.68-0.69), with a sensitivity of 37.6% (95% CI, 35.7-39.4), specificity of 87.5% (95% CI, 86.9-88.2), and F1-score of 0.34 (95% CI, 0.33-0.35). The clinicopathologic-alone model yielded the highest AUC of 0.92 (95% CI, 0.92-0.92) and sensitivity of 93.6% (95% CI, 93.4-93.8), but showed the lowest specificity (72.3%, 95% CI, 71.8-72.8) and F1-score of 0.50 (95% CI, 0.49-0.50). The combined model demonstrated the most balanced performance, achieving an AUC of 0.90 (95% CI, 0.89-0.91), sensitivity of 80.0% (95% CI, 78.7-81.3), specificity of 83.2% (95% CI: 82.7-83.6), and the highest F1-score of 0.55 (95% CI, 0.54-0.57). The DL-based model combining MRI and clinicopathological features showed superior performance in predicting recurrence in HER2-low breast cancer. This multimodal approach offers a framework for individualized risk assessment and may aid in refining follow-up strategies.

摘要

开发一种基于深度学习的模型来预测HER2低表达乳腺癌患者的复发风险,并比较仅使用MRI、仅使用临床病理特征以及两者结合的模型的性能。我们分析了2018年5月至2022年4月期间接受手术和术前乳腺MRI检查的453例HER2低表达乳腺癌患者。患者被随机分配到训练队列(n = 331)或测试队列(n = 122)。从动态对比增强MRI(DCE-MRI)和表观扩散系数(ADC)图中提取影像特征,感兴趣区域由放射科医生手动标注。临床病理特征包括肿瘤大小、淋巴结状态、组织学分级和激素受体状态。开发了三种深度学习预测模型:基于卷积神经网络(CNN)的仅MRI模型、基于多层感知器(MLP)的仅临床病理模型以及通过MLP将CNN提取的MRI特征与临床病理数据相结合的联合模型。使用曲线下面积(AUC)、灵敏度、特异度和F1分数评估模型性能。仅MRI模型的AUC为0.69(95%置信区间,0.68 - 0.69),灵敏度为37.6%(95%置信区间,35.7 - 39.4),特异度为87.5%(95%置信区间,86.9 - 88.2),F1分数为0.34(95%置信区间,0.33 - 0.35)。仅临床病理模型的AUC最高,为0.92(95%置信区间,0.92 - 0.92),灵敏度为93.6%(95%置信区间,93.4 - 93.8),但特异度最低(72.3%,95%置信区间,71.8 - 72.8),F1分数为0.50(95%置信区间,0.49 - 0.50)。联合模型表现出最平衡的性能,AUC为0.90(95%置信区间,0.89 - 0.91),灵敏度为80.0%(95%置信区间,78.7 - 81.3),特异度为83.2%(95%置信区间:82.7 - 83.6),F1分数最高,为0.55(95%置信区间,0.54 - 0.57)。基于深度学习的结合MRI和临床病理特征的模型在预测HER2低表达乳腺癌复发方面表现出卓越性能。这种多模态方法为个性化风险评估提供了一个框架,并可能有助于优化随访策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/a98e9fa372f8/diagnostics-15-01895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/05889e88b391/diagnostics-15-01895-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/cdfcb27f9b67/diagnostics-15-01895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/06f1232654f1/diagnostics-15-01895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/da27b929b101/diagnostics-15-01895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/b7ee56616d88/diagnostics-15-01895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/a98e9fa372f8/diagnostics-15-01895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/05889e88b391/diagnostics-15-01895-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/cdfcb27f9b67/diagnostics-15-01895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/06f1232654f1/diagnostics-15-01895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/da27b929b101/diagnostics-15-01895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/b7ee56616d88/diagnostics-15-01895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3f/12346550/a98e9fa372f8/diagnostics-15-01895-g006.jpg

相似文献

[1]
Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models.

Diagnostics (Basel). 2025-7-29

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Development and validation of an MRI spatiotemporal interaction model for early noninvasive prediction of neoadjuvant chemotherapy response in breast cancer: a multicentre study.

EClinicalMedicine. 2025-6-12

[4]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[5]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[6]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[7]
Combining conventional magnetic resonance imaging (MRI) parameters with clinicopathologic data for differentiation of the three-tiered human epidermal growth factor receptor 2 (HER2) status in breast cancer.

Clin Radiol. 2025-7

[8]
Multilayer perceptron deep learning radiomics model based on Gd-BOPTA MRI to identify vessels encapsulating tumor clusters in hepatocellular carcinoma: a multi-center study.

Cancer Imaging. 2025-7-7

[9]
Positron emission tomography (PET) and magnetic resonance imaging (MRI) for the assessment of axillary lymph node metastases in early breast cancer: systematic review and economic evaluation.

Health Technol Assess. 2011-1

[10]
The Role of Multiparametric MRI Radiomics for Preoperative Prediction of Axillary Lymph Node Metastasis in Patients With Invasive Breast Cancer: A Comparative Study.

Cancer Innov. 2025-7-13

本文引用的文献

[1]
Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-Based Tool.

Mod Pathol. 2025-7-16

[2]
Prediction of one-year recurrence among breast cancer patients undergone surgery using artificial intelligence-based algorithms: a retrospective study on prognostic factors.

BMC Cancer. 2025-5-26

[3]
Harnessing artificial intelligence for predicting breast cancer recurrence: a systematic review of clinical and imaging data.

Discov Oncol. 2025-2-8

[4]
Leveraging survival analysis and machine learning for accurate prediction of breast cancer recurrence and metastasis.

Sci Rep. 2025-1-29

[5]
Efficacy and prognosis of HER2-Low and HER2-Zero in triple-negative breast cancer after neoadjuvant chemotherapy.

Sci Rep. 2024-7-23

[6]
A predictive model using MRI and clinicopathologic features for breast cancer recurrence in young women treated with upfront surgery.

Eur Radiol. 2024-11

[7]
Prognostic value and relapse pattern of HER2-low in hormone receptor-positive breast cancer.

Thorac Cancer. 2024-3

[8]
Challenges and limitations of synthetic minority oversampling techniques in machine learning.

World J Methodol. 2023-12-20

[9]
Triple-negative breast cancer: predictive model of early recurrence based on MRI features.

Clin Radiol. 2023-11

[10]
Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning-Based Models.

JCO Clin Cancer Inform. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索