Wang Ruixin, Wang Jinghang, Zhao Wei, Liu Xiaohui, Tan Guoping, Liu Jun, Wang Zhiyuan
Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
The First People's Hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, China.
Diagnostics (Basel). 2025 Jul 31;15(15):1926. doi: 10.3390/diagnostics15151926.
: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. : To address these challenges, we propose a novel method that uses synthetic US puncture data to pre-train DL-based tip detectors, improving their generalization. Synthetic data are generated by fusing clinical US images of healthy controls with tips created using generative DL models. To ensure clinical diversity, we constructed a dataset from scans of 20 volunteers, covering 20 organs or anatomical regions, obtained with six different US machines and performed by three physicians with varying expertise levels. Tip diversity is introduced by generating a wide range of synthetic tips using a denoising probabilistic diffusion model (DDPM). This method synthesizes a large volume of diverse US puncture data, which are used to pre-train tip detectors, followed by subsequently training with real puncture data. : Our method outperforms MSCOCO pre-training on a clinical puncture dataset, achieving a 1.27-7.19% improvement in AP with varying numbers of real samples. State-of-the-art detectors also show performance gains of 1.14-1.76% when applying the proposed method. The experimental results demonstrate that our method enhances the generalization of tip detectors without relying on expert annotations or large amounts of real data, offering significant potential for more accurate visual guidance during US-guided interventions and broader clinical applications.
自动针尖定位在超声(US)引导介入中至关重要。尽管深度学习(DL)已被广泛用于精确的针尖检测,但现有方法受到真实穿刺数据和专家标注可用性的限制。为应对这些挑战,我们提出了一种新颖的方法,该方法使用合成的US穿刺数据对基于DL的针尖探测器进行预训练,以提高其泛化能力。合成数据是通过将健康对照的临床US图像与使用生成式DL模型创建的针尖融合而生成的。为确保临床多样性,我们从20名志愿者的扫描中构建了一个数据集,涵盖20个器官或解剖区域,使用六台不同的US机器获取,并由三名专业水平不同的医生进行操作。通过使用去噪概率扩散模型(DDPM)生成广泛的合成针尖来引入针尖多样性。该方法合成了大量多样的US穿刺数据,用于预训练针尖探测器,随后再用真实穿刺数据进行训练。我们的方法在临床穿刺数据集上优于MSCOCO预训练,在不同数量的真实样本下,平均精度(AP)提高了1.27 - 7.19%。当应用所提出的方法时,最先进的探测器也显示出1.14 - 1.76%的性能提升。实验结果表明,我们的方法在不依赖专家标注或大量真实数据的情况下增强了针尖探测器的泛化能力,为US引导介入期间更准确的视觉引导和更广泛的临床应用提供了巨大潜力。