文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

快速去噪扩散概率模型:用于医学图像到图像生成的快速去噪扩散概率模型

Fast-DDPM: Fast Denoising Diffusion Probabilistic Models for Medical Image-to-Image Generation.

作者信息

Jiang Hongxu, Imran Muhammad, Zhang Teng, Zhou Yuyin, Liang Muxuan, Gong Kuang, Shao Wei

出版信息

IEEE J Biomed Health Inform. 2025 Apr 28;PP. doi: 10.1109/JBHI.2025.3565183.


DOI:10.1109/JBHI.2025.3565183
PMID:40293895
Abstract

Denoising diffusion probabilistic models (DDPMs) have achieved unprecedented success in computer vision. However, they remain underutilized in medical imaging, a field crucial for disease diagnosis and treatment planning. This is primarily due to the high computational cost associated with the use of large number of time steps (e.g., 1,000) in diffusion processes. Training a diffusion model on medical images typically takes days to weeks, while sampling each image volume takes minutes to hours. To address this challenge, we introduce Fast-DDPM, a simple yet effective approach capable of simultaneously improving training speed, sampling speed, and generation quality. Unlike DDPM, which trains the image denoiser across 1,000 time steps, Fast-DDPM trains and samples using only 10 time steps. The key to our method lies in aligning the training and sampling procedures to optimize time-step utilization. Specifically, we introduced two efficient noise schedulers with 10 time steps: one with uniform time step sampling and another with non-uniform sampling. We evaluated Fast-DDPM across three medical image-to-image generation tasks: multi-image super-resolution, image denoising, and image-to-image translation. Fast-DDPM outperformed DDPM and current state-of-the-art methods based on convolutional networks and generative adversarial networks in all tasks. Additionally, Fast-DDPM reduced the training time to 0.2× and the sampling time to 0.01× compared to DDPM. Our code is publicly available at: https://github.com/mirthAI/Fast-DDPM.

摘要

去噪扩散概率模型(DDPMs)在计算机视觉领域取得了前所未有的成功。然而,它们在医学成像中仍未得到充分利用,而医学成像对于疾病诊断和治疗规划至关重要。这主要是由于在扩散过程中使用大量时间步长(例如1000个)会带来高昂的计算成本。在医学图像上训练扩散模型通常需要数天到数周的时间,而对每个图像体进行采样则需要数分钟到数小时。为应对这一挑战,我们引入了Fast-DDPM,这是一种简单而有效的方法,能够同时提高训练速度、采样速度和生成质量。与在1000个时间步长上训练图像去噪器的DDPM不同,Fast-DDPM仅使用10个时间步长进行训练和采样。我们方法的关键在于使训练和采样过程保持一致,以优化时间步长的利用。具体而言,我们引入了两种具有10个时间步长的高效噪声调度器:一种采用均匀时间步长采样,另一种采用非均匀采样。我们在三个医学图像到图像生成任务中对Fast-DDPM进行了评估:多图像超分辨率、图像去噪和图像到图像翻译。在所有任务中,Fast-DDPM均优于DDPM以及基于卷积网络和生成对抗网络的当前最先进方法。此外,与DDPM相比,Fast-DDPM将训练时间缩短至0.2倍,采样时间缩短至0.01倍。我们的代码可在以下网址公开获取:https://github.com/mirthAI/Fast-DDPM 。

相似文献

[1]
Fast-DDPM: Fast Denoising Diffusion Probabilistic Models for Medical Image-to-Image Generation.

IEEE J Biomed Health Inform. 2025-4-28

[2]
Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels.

Eur J Nucl Med Mol Imaging. 2025-6

[3]
CBCT Reconstruction Using Single X-Ray Projection With Cycle-Domain Geometry-Integrated Denoising Diffusion Probabilistic Models.

IEEE Trans Med Imaging. 2025-7

[4]
Semi-Implicit Denoising Diffusion Models (SIDDMs).

Adv Neural Inf Process Syst. 2023-12

[5]
PET image denoising based on denoising diffusion probabilistic model.

Eur J Nucl Med Mol Imaging. 2024-1

[6]
On Denoising Diffusion Probabilistic Models for Synthetic Aperture Radar Despeckling.

Sensors (Basel). 2025-3-28

[7]
Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models.

Int J Biomed Imaging. 2024-12-19

[8]
Diffusion probabilistic versus generative adversarial models to reduce contrast agent dose in breast MRI.

Eur Radiol Exp. 2024-5-1

[9]
CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model.

Med Phys. 2024-9

[10]
MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting.

ArXiv. 2025-4-26

引用本文的文献

[1]
Enhancing Tip Detection by Pre-Training with Synthetic Data for Ultrasound-Guided Intervention.

Diagnostics (Basel). 2025-7-31

[2]
Generative Artificial Intelligence in Prostate Cancer Imaging.

Balkan Med J. 2025-7-1

[3]
Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels.

Eur J Nucl Med Mol Imaging. 2025-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索