Jiang Hongxu, Imran Muhammad, Zhang Teng, Zhou Yuyin, Liang Muxuan, Gong Kuang, Shao Wei
IEEE J Biomed Health Inform. 2025 Apr 28;PP. doi: 10.1109/JBHI.2025.3565183.
Denoising diffusion probabilistic models (DDPMs) have achieved unprecedented success in computer vision. However, they remain underutilized in medical imaging, a field crucial for disease diagnosis and treatment planning. This is primarily due to the high computational cost associated with the use of large number of time steps (e.g., 1,000) in diffusion processes. Training a diffusion model on medical images typically takes days to weeks, while sampling each image volume takes minutes to hours. To address this challenge, we introduce Fast-DDPM, a simple yet effective approach capable of simultaneously improving training speed, sampling speed, and generation quality. Unlike DDPM, which trains the image denoiser across 1,000 time steps, Fast-DDPM trains and samples using only 10 time steps. The key to our method lies in aligning the training and sampling procedures to optimize time-step utilization. Specifically, we introduced two efficient noise schedulers with 10 time steps: one with uniform time step sampling and another with non-uniform sampling. We evaluated Fast-DDPM across three medical image-to-image generation tasks: multi-image super-resolution, image denoising, and image-to-image translation. Fast-DDPM outperformed DDPM and current state-of-the-art methods based on convolutional networks and generative adversarial networks in all tasks. Additionally, Fast-DDPM reduced the training time to 0.2× and the sampling time to 0.01× compared to DDPM. Our code is publicly available at: https://github.com/mirthAI/Fast-DDPM.
去噪扩散概率模型(DDPMs)在计算机视觉领域取得了前所未有的成功。然而,它们在医学成像中仍未得到充分利用,而医学成像对于疾病诊断和治疗规划至关重要。这主要是由于在扩散过程中使用大量时间步长(例如1000个)会带来高昂的计算成本。在医学图像上训练扩散模型通常需要数天到数周的时间,而对每个图像体进行采样则需要数分钟到数小时。为应对这一挑战,我们引入了Fast-DDPM,这是一种简单而有效的方法,能够同时提高训练速度、采样速度和生成质量。与在1000个时间步长上训练图像去噪器的DDPM不同,Fast-DDPM仅使用10个时间步长进行训练和采样。我们方法的关键在于使训练和采样过程保持一致,以优化时间步长的利用。具体而言,我们引入了两种具有10个时间步长的高效噪声调度器:一种采用均匀时间步长采样,另一种采用非均匀采样。我们在三个医学图像到图像生成任务中对Fast-DDPM进行了评估:多图像超分辨率、图像去噪和图像到图像翻译。在所有任务中,Fast-DDPM均优于DDPM以及基于卷积网络和生成对抗网络的当前最先进方法。此外,与DDPM相比,Fast-DDPM将训练时间缩短至0.2倍,采样时间缩短至0.01倍。我们的代码可在以下网址公开获取:https://github.com/mirthAI/Fast-DDPM 。
IEEE J Biomed Health Inform. 2025-4-28
Eur J Nucl Med Mol Imaging. 2025-6
Adv Neural Inf Process Syst. 2023-12
Eur J Nucl Med Mol Imaging. 2024-1
Sensors (Basel). 2025-3-28
Int J Biomed Imaging. 2024-12-19
Diagnostics (Basel). 2025-7-31
Balkan Med J. 2025-7-1
Eur J Nucl Med Mol Imaging. 2025-6