Kong Xiang-Shan, Ran Fang-Fang, Song Chi
State Key Laboratory of Advanced Equipment and Technology for Metal Forming, and Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China.
College of Science, Jinling Institute of Technology, Nanjing 211169, China.
Materials (Basel). 2025 Jul 27;18(15):3518. doi: 10.3390/ma18153518.
Helium (He) accumulation in tungsten-widely used as a plasma-facing material in fusion reactors-can lead to clustering, trap mutation, and eventual formation of helium bubbles, critically impacting material performance. To clarify the atomic-scale mechanisms governing this process, we conducted systematic molecular statics and molecular dynamics simulations across a wide range of vacancy cluster sizes (n = 1-27) and temperatures (500-2000 K). We identified the onset of trap mutation through abrupt increases in tungsten atomic displacement. At 0 K, the critical helium-to-vacancy (He/V) ratio required to trigger mutation was found to scale inversely with cluster size, converging to ~5.6 for large clusters. At elevated temperatures, thermal activation lowered the mutation threshold and introduced a distinct He/V stability window. Below this window, clusters tend to dissociate; above it, trap mutation occurs with near certainty. This critical He/V ratio exhibits a linear dependence on temperature and can be described by a size- and temperature-dependent empirical relation. Our results provide a quantitative framework for predicting trap mutation behavior in tungsten, offering key input for multiscale models and informing the design of radiation-resistant materials for fusion applications.
氦(He)在钨中的积累——钨在聚变反应堆中广泛用作面向等离子体的材料——会导致聚集、陷阱突变,并最终形成氦泡,严重影响材料性能。为了阐明控制这一过程的原子尺度机制,我们在广泛的空位团簇尺寸(n = 1 - 27)和温度范围(500 - 2000 K)内进行了系统的分子静力学和分子动力学模拟。我们通过钨原子位移的突然增加确定了陷阱突变的起始点。在0 K时,发现触发突变所需的临界氦与空位(He/V)比与团簇尺寸成反比,对于大团簇收敛到~5.6。在升高的温度下,热激活降低了突变阈值并引入了一个明显的He/V稳定窗口。在这个窗口以下,团簇倾向于解离;在其之上,陷阱突变几乎肯定会发生。这个临界He/V比与温度呈线性关系,可以用一个与尺寸和温度相关的经验关系来描述。我们的结果为预测钨中的陷阱突变行为提供了一个定量框架,为多尺度模型提供了关键输入,并为聚变应用的抗辐射材料设计提供了参考。