Suppr超能文献

Al-Mg-Si合金纳米压痕变形的高通量研究

High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys.

作者信息

Shen Tong, Xu Guanglong, Chen Fuwen, Zhu Shuaishuai, Cui Yuwen

机构信息

Sino-Spain Joint Laboratory on Biomedical Materials (S2LBM), College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.

School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

出版信息

Materials (Basel). 2025 Aug 4;18(15):3663. doi: 10.3390/ma18153663.

Abstract

Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation-specifically the kinetic diffusion multiple (KDM) method-to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition-deformation relationships in Al-Mg-Si alloys.

摘要

Al-Mg-Si(6XXX)系铝合金广泛应用于航空航天和交通运输行业。然而,由于多组分成分空间的复杂性以及加工和热处理的多样性,探索不同成分如何影响合金性能和变形机制往往既耗时又费力。本研究受材料基因组计划的启发,采用高通量实验——具体而言是动力学扩散多重(KDM)方法——来系统地研究室温下Al-Mg-Si合金的弹出效应、压痕尺寸效应(ISE)和蠕变行为如何随成分变化。为此,设计并制备了一种6016/Al-3Si/Al-1.2Mg/Al KDM材料。在530℃下进行72小时的扩散退火后,形成了两个连接区域,其成分和微观结构梯度延伸超过一千微米。随后进行固溶处理(530℃,30分钟)和人工时效(185℃,20分钟)以模拟工业加工条件。通过电子探针微分析(EPMA)、带连续刚度测量(CSM)的纳米压痕以及对这些梯度区域进行纳米压痕蠕变测试的综合表征揭示了关键见解。结果表明,增加Mg和Si含量会逐渐抑制弹出效应。当合金成分超过1.0 wt.%时,由于溶质原子与可移动位错之间的强烈相互作用,弹出事件几乎消除。此外,对ISE的调整能够在微观成分阵列中快速评估Mg和Si的强化贡献,表明在固定的总合金含量下,当Mg与Si的原子比约为1时,强化效果最佳。此外,对蠕变应力指数和激活体积的分析表明,位错运动是主要的蠕变机制。总体而言,这种改进的KDM方法被证明是加速研究Al-Mg-Si合金成分-变形关系的有效概念工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23af/12348925/66dbabd02d7b/materials-18-03663-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验