Gelbing Philip, Jelken Joachim, Foschum Florian, Kienle Alwin
Institut für Lasertechnologien in der Medizin und Meßtechnik, Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany.
Materials (Basel). 2025 Aug 7;18(15):3710. doi: 10.3390/ma18153710.
Accurate determination of the quantum yield (Φf) in scattering media is essential for numerous scientific and industrial applications, but it remains challenging due to re-absorption and scattering-induced biases. In this study, we present a GPU-accelerated Monte Carlo simulation framework that solves the full fluorescence radiative transfer equation (FRTE), incorporating spectrally dependent absorption, scattering, and fluorescence cascade processes. The model accounts for re-emission shifts, energy scaling due to the Stokes shift and implements a digital optical twin of the experimental setup, including the precise description of the applied integrating sphere. Using Rhodamine 6G in both ethanol and PDMS matrices, we demonstrate the accuracy of the method by comparing simulated reflectance and transmission spectra with independent experimental measurements. Φf and emission distributions are optimized using a Levenberg-Marquardt algorithm. The obtained quantum yields agree well with literature values for Rhodamine 6G. This approach eliminates the need for empirical correction factors, enabling the reliable determination of actual, undistorted emission spectra and the Φf in complex scattering media.
准确测定散射介质中的量子产率(Φf)对于众多科学和工业应用至关重要,但由于再吸收和散射引起的偏差,这仍然具有挑战性。在本研究中,我们提出了一种GPU加速的蒙特卡罗模拟框架,该框架求解完整的荧光辐射传输方程(FRTE),纳入了光谱依赖的吸收、散射和荧光级联过程。该模型考虑了再发射位移、由于斯托克斯位移引起的能量缩放,并实现了实验装置的数字光学孪生,包括对所应用积分球的精确描述。我们在乙醇和聚二甲基硅氧烷(PDMS)基质中使用罗丹明6G,通过将模拟的反射率和透射光谱与独立的实验测量结果进行比较,证明了该方法的准确性。使用列文伯格-马夸尔特算法优化Φf和发射分布。获得的量子产率与罗丹明6G的文献值吻合良好。这种方法无需经验校正因子,能够可靠地确定复杂散射介质中实际的、未失真的发射光谱和Φf。