文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能驱动的医疗移动应用程序可用性的综合比较与评估

A Comprehensive Comparison and Evaluation of AI-Powered Healthcare Mobile Applications' Usability.

作者信息

Alduhailan Hessah W, Alshamari Majed A, Wahsheh Heider A M

机构信息

Department of Information Systems, College of Computer Science and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

出版信息

Healthcare (Basel). 2025 Jul 26;13(15):1829. doi: 10.3390/healthcare13151829.


DOI:10.3390/healthcare13151829
PMID:40805861
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12345953/
Abstract

: Artificial intelligence (AI) symptom-checker apps are proliferating, yet their everyday usability and transparency remain under-examined. This study provides a triangulated evaluation of three widely used AI-powered mHealth apps: ADA, Mediktor, and WebMD. : Five usability experts applied a 13-item AI-specific heuristic checklist. In parallel, thirty lay users (18-65 years) completed five health-scenario tasks on each app, while task success, errors, completion time, and System Usability Scale (SUS) ratings were recorded. A repeated-measures ANOVA followed by paired-sample -tests was conducted to compare SUS scores across the three applications. : The analysis revealed statistically significant differences in usability across the apps. ADA achieved a significantly higher mean SUS score than both Mediktor ( = 0.0004) and WebMD ( < 0.001), while Mediktor also outperformed WebMD ( = 0.0009). Common issues across all apps included vague AI outputs, limited feedback for input errors, and inconsistent navigation. Each application also failed key explainability heuristics, offering no confidence scores or interpretable rationales for AI-generated recommendations. : Even highly rated AI mHealth apps display critical gaps in explainability and error handling. Embedding explainable AI (XAI) cues such as confidence indicators, input validation, and transparent justifications can enhance user trust, safety, and overall adoption in real-world healthcare contexts.

摘要

人工智能(AI)症状检查应用程序正在激增,但其日常可用性和透明度仍未得到充分检验。本研究对三款广泛使用的人工智能驱动的移动健康应用程序进行了三角测量评估:ADA、Mediktor和WebMD。五名可用性专家应用了一份包含13项内容的特定于人工智能的启发式检查表。与此同时,30名普通用户(18至65岁)在每个应用程序上完成了五项健康场景任务,同时记录任务成功率、错误情况、完成时间和系统可用性量表(SUS)评分。进行了重复测量方差分析,随后进行配对样本检验,以比较这三款应用程序的SUS得分。分析显示,各应用程序在可用性方面存在统计学上的显著差异。ADA的平均SUS得分显著高于Mediktor(P = 0.0004)和WebMD(P < 0.001),而Mediktor也优于WebMD(P = 0.0009)。所有应用程序的常见问题包括人工智能输出模糊、对输入错误的反馈有限以及导航不一致。每个应用程序还未通过关键的可解释性启发式检验,没有为人工智能生成的建议提供置信度分数或可解释的理由。即使是评分很高的人工智能移动健康应用程序,在可解释性和错误处理方面也存在关键差距。嵌入可解释人工智能(XAI)线索,如置信度指标、输入验证和透明理由,可以增强用户信任、安全性以及在现实世界医疗环境中的整体采用率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/d1b55e5a492a/healthcare-13-01829-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/089b995cb0a4/healthcare-13-01829-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/07b9a385ead3/healthcare-13-01829-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/084c864a8434/healthcare-13-01829-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/8ad0dd20e769/healthcare-13-01829-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/3882e460a011/healthcare-13-01829-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/7e6bc48bdfee/healthcare-13-01829-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/d1b55e5a492a/healthcare-13-01829-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/089b995cb0a4/healthcare-13-01829-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/07b9a385ead3/healthcare-13-01829-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/084c864a8434/healthcare-13-01829-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/8ad0dd20e769/healthcare-13-01829-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/3882e460a011/healthcare-13-01829-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/7e6bc48bdfee/healthcare-13-01829-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc9/12345953/d1b55e5a492a/healthcare-13-01829-g007.jpg

相似文献

[1]
A Comprehensive Comparison and Evaluation of AI-Powered Healthcare Mobile Applications' Usability.

Healthcare (Basel). 2025-7-26

[2]
Designing Survey-Based Mobile Interfaces for Rural Patients With Cancer Using Apple's ResearchKit and CareKit: Usability Study.

JMIR Form Res. 2024-9-26

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Does an App a Day Keep the Doctor Away? AI Symptom Checker Applications, Entrenched Bias, and Professional Responsibility.

J Med Internet Res. 2024-6-5

[5]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[6]
Evaluating the Usability, Technical Performance, and Accuracy of Artificial Intelligence Scribes for Primary Care: Competitive Analysis.

JMIR Hum Factors. 2025-7-23

[7]
Tools for Evaluating the Content, Efficacy, and Usability of Mobile Health Apps According to the Consensus-Based Standards for the Selection of Health Measurement Instruments: Systematic Review.

JMIR Mhealth Uhealth. 2021-12-1

[8]
Designing Clinical Decision Support Systems (CDSS)-A User-Centered Lens of the Design Characteristics, Challenges, and Implications: Systematic Review.

J Med Internet Res. 2025-6-20

[9]
Evaluating privacy policies of AI-powered mHealth iOS applications.

J Am Med Inform Assoc. 2025-7-30

[10]
Mobile applications for diabetics: a systematic review and expert-based usability evaluation considering the special requirements of diabetes patients age 50 years or older.

J Med Internet Res. 2014-4-9

本文引用的文献

[1]
Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges.

J Med Internet Res. 2023-5-4

[2]
Testing the Acceptability and Usability of an AI-Enabled COVID-19 Diagnostic Tool Among Diverse Adult Populations in the United States.

Qual Manag Health Care.

[3]
Performance and usability testing of an automated tool for detection of peripheral artery disease using electronic health records.

Sci Rep. 2022-8-3

[4]
Assessing the Usability of a Clinical Decision Support System: Heuristic Evaluation.

JMIR Hum Factors. 2022-5-10

[5]
Evaluating User Feedback for an Artificial Intelligence-Enabled, Cognitive Behavioral Therapy-Based Mental Health App (Wysa): Qualitative Thematic Analysis.

JMIR Hum Factors. 2022-4-12

[6]
Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond.

Inf Fusion. 2022-1

[7]
Usability of Telemedicine Mobile Applications during COVID-19 in Saudi Arabia: A Heuristic Evaluation of Patient User Interfaces.

Healthcare (Basel). 2021-11-18

[8]
Applied Artificial Intelligence and user satisfaction: Smartwatch usage for healthcare in Bangladesh during COVID-19.

Technol Soc. 2021-11

[9]
Research Trends in Artificial Intelligence Applications in Human Factors Health Care: Mapping Review.

JMIR Hum Factors. 2021-6-18

[10]
Trust in Artificial Intelligence: Meta-Analytic Findings.

Hum Factors. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索