Yang Guang, Ye Qinghao, Xia Jun
National Heart and Lung Institute, Imperial College London, London, UK.
Royal Brompton Hospital, London, UK.
Inf Fusion. 2022 Jan;77:29-52. doi: 10.1016/j.inffus.2021.07.016.
Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at how AI systems' choices are made. This research field inspects the measures and models involved in decision-making and seeks solutions to explain them explicitly. Many of the machine learning algorithms cannot manifest how and why a decision has been cast. This is particularly true of the most popular deep neural network approaches currently in use. Consequently, our confidence in AI systems can be hindered by the lack of explainability in these models. The XAI becomes more and more crucial for deep learning powered applications, especially for medical and healthcare studies, although in general these deep neural networks can return an arresting dividend in performance. The insufficient explainability and transparency in most existing AI systems can be one of the major reasons that successful implementation and integration of AI tools into routine clinical practice are uncommon. In this study, we first surveyed the current progress of XAI and in particular its advances in healthcare applications. We then introduced our solutions for XAI leveraging multi-modal and multi-centre data fusion, and subsequently validated in two showcases following real clinical scenarios. Comprehensive quantitative and qualitative analyses can prove the efficacy of our proposed XAI solutions, from which we can envisage successful applications in a broader range of clinical questions.
可解释人工智能(XAI)是机器学习领域一个新兴的研究课题,旨在探究人工智能系统如何做出决策。该研究领域审视决策过程中涉及的方法和模型,并寻求能够清晰解释这些方法和模型的解决方案。许多机器学习算法无法表明决策是如何做出的以及为何如此做出。当前使用的最流行的深度神经网络方法尤其如此。因此,这些模型缺乏可解释性会阻碍我们对人工智能系统的信任。尽管总体而言,这些深度神经网络能够在性能上带来显著提升,但对于由深度学习驱动的应用而言,尤其是医学和医疗保健研究领域,XAI变得越来越关键。大多数现有人工智能系统缺乏可解释性和透明度,这可能是人工智能工具难以成功应用并融入日常临床实践的主要原因之一。在本研究中,我们首先调研了XAI的当前进展,特别是其在医疗保健应用方面的进展。然后,我们介绍了利用多模态和多中心数据融合实现XAI的解决方案,并随后在两个基于真实临床场景的案例中进行了验证。全面的定量和定性分析能够证明我们所提出的XAI解决方案的有效性,由此我们可以设想其在更广泛的临床问题中成功应用的前景。
Comput Struct Biotechnol J. 2025-1-10
Brief Bioinform. 2023-9-20
Diagnostics (Basel). 2022-1-19
J Med Internet Res. 2024-12-24
Open Forum Infect Dis. 2025-8-15
J Med Internet Res. 2025-8-22
Healthcare (Basel). 2025-7-26
Lancet Digit Health. 2025-6-14
Med Image Comput Comput Assist Interv. 2018-9
IEEE Trans Pattern Anal Mach Intell. 2023-1
Artif Intell Med. 2022-2
Radiol Artif Intell. 2021-3-24
Proc AAAI Conf Hum Comput Crowdsourc. 2019
Ultrasonography. 2021-4
Entropy (Basel). 2020-12-25
IEEE Trans Pattern Anal Mach Intell. 2022-5
IEEE Trans Neural Netw Learn Syst. 2021-11