Sarà Mariachiara, Romeo Andrea, Lando Gabriele, Castriciano Maria Angela, Zagami Roberto, Neri Giovanni, Monsù Scolaro Luigi
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D'Alcontres, 31, 98166 Messina, Italy.
CNR-ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D'Alcontres, 31, 98166 Messina, Italy.
Int J Mol Sci. 2025 Jul 28;26(15):7295. doi: 10.3390/ijms26157295.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged -tetrakis(4-sulfonatophenyl) porphyrin (TPPS). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS, that exhibits a double fluorescence emission from both the GQDs and the TPPS fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS. The quenching efficiency of the TPPS emission follows the order Cu > Hg > Cd > Pb ~ Zn ~ Co ~ Ni > Mn ~ Cr >> Mg ~ Ca ~ Ba, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg and Cd) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn reveals the ability of the GQDs@TPPS adduct to detect sensitively Cu, Hg and Cd ions.
通过对谷氨酸和三亚乙基四胺(trien)进行微波诱导热解获得的石墨烯量子点(GQDs)是相当稳定、发光、水溶性且带正电荷的纳米体系,能够与带负电荷的四(4-磺基苯基)卟啉(TPPS)相互作用。制备过程中的化学计量控制得到一种超分子加合物GQDs@TPPS,它表现出来自GQDs和TPPS荧光团的双重荧光发射。这些超分子聚集体具有整体负电荷,这导致附近水层中阳离子的凝聚,并且相对于母体卟啉,观察到Cu离子的金属化速率加快了三倍。添加各种金属离子会导致紫外/可见光谱发生一些变化,并且对GQDs和TPPS的荧光发射有不同影响。TPPS发射的猝灭效率遵循Cu > Hg > Cd > Pb ~ Zn ~ Co ~ Ni > Mn ~ Cr >> Mg ~ Ca ~ Ba的顺序,并且这与文献数据以及大的过渡金属离子(例如Hg和Cd)在与卟啉的大环氮原子相互作用时表现出的“坐在上面(sitting-atop)”机制有关,这种机制会导致扭曲并加速较小金属离子(如Zn)的插入。对于最相关的金属离子,卟啉的发射猝灭在微摩尔范围内呈现线性行为,GQDs的发射通过滤光效应受到适度影响。用Zn故意污染样品表明GQDs@TPPS加合物能够灵敏地检测Cu、Hg和Cd离子。