Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida - 201313, India.
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida - 201313, India.
Biomater Sci. 2022 Mar 29;10(7):1647-1679. doi: 10.1039/d2bm00016d.
Engineered well-ordered hybrid nanomaterials are symbolically at a pivotal point, just ahead of the long-anticipated transformation of the human race. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins (Pp) and phthalocyanines (Pc) is crucial for achieving exquisite molecular nanoarchitectures that are superior to their individual components. The outcomes of this, particularly in the case of graphene quantum dot-porphyrin/phthalocyanine (GQD-Pp/Pc) hybrids, remain comprehensively unexplored to date. Interestingly, GQD-Pp/Pc hybrids provide a modern strategy to regulate matter by utilising intramolecular and organisational properties to create well-defined nanocomposites a synergistic enhancement effect. The high molar absorption coefficient and enhanced energy transfer, hole and electron transfer abilities capabilities allow Pp and Pc to exhibit a wide spectrum of photophysical and photochemical features. However, their low biostability, non-specific tumor-targeting properties, hydrophobicity, and low cellular internalisation efficiency limit their extensive biomedical utility. Conjugating Pp/Pc to nanocarriers such as GQDs improves their targeted delivery, immunological tolerance, and longevity. Due to the zero-order release kinetics of GQDs, they can assist in maintaining a steady rate of photosensitiser (PS) delivery at the desired site. To completely rationalise the functionalization of GQD-Pp/Pc species at interfaces, we investigate the current prominence and future potential of porphyrin-related graphene nanosystems, especially GQDs, for the development of various applications. This encouraging report demonstrates how GQD-Pp/Pc species can be used to examine new phenomena at the multidisciplinary level. Notably, a customised hybrid system optimises amendable and diverse functional properties, yielding a ray of hope in the fields of photodynamic therapy (PDT), photocatalysis, solar cells, sensing, and beyond various photo-physicochemical approaches such as electron transfer, catalytic transformation, light-harvesting, and axial/peripheral ligation of adducts. Gratifyingly, the covalent and non-covalent coupling of functional molecular units at interfaces enable new properties to be generated in hybrid systems.
工程化的有序杂化纳米材料正处于一个关键的转折点,即将迎来人类的预期变革。将新型碳纳米材料如石墨烯量子点(GQDs)与四吡咯卟啉(Pp)和酞菁(Pc)结合,对于构建优于其各个组成部分的精致分子纳米结构至关重要。到目前为止,特别是在石墨烯量子点-卟啉/酞菁(GQD-Pp/Pc)杂化体的情况下,这些杂化体的结果仍未得到全面探索。有趣的是,GQD-Pp/Pc 杂化体提供了一种通过利用分子内和组织特性来调控物质的现代策略,以创建明确定义的纳米复合材料,从而实现协同增强效应。高摩尔吸收系数和增强的能量转移、空穴和电子转移能力使 Pp 和 Pc 能够表现出广泛的光物理和光化学特性。然而,它们的生物稳定性低、非特异性肿瘤靶向特性、疏水性和低细胞内化效率限制了它们在广泛的生物医学中的应用。将 Pp/Pc 与纳米载体如 GQDs 结合可以提高它们的靶向递送、免疫耐受性和寿命。由于 GQDs 的零级释放动力学,它们可以帮助在所需部位维持稳定的光敏剂(PS)递送速率。为了完全合理化 GQD-Pp/Pc 物种在界面上的功能化,我们研究了与卟啉相关的石墨烯纳米系统,特别是 GQDs,在各种应用中的当前突出地位和未来潜力。这一令人鼓舞的报告展示了 GQD-Pp/Pc 物种如何用于在多学科层面上研究新现象。值得注意的是,定制的杂化系统优化了可修改和多样化的功能特性,为光动力疗法(PDT)、光催化、太阳能电池、传感等领域带来了新的希望,以及各种光物理化学方法,如电子转移、催化转化、光捕获和加合物的轴向/外围键合。令人高兴的是,在界面处的功能分子单元的共价和非共价偶联可以在杂化系统中产生新的性质。