文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于监督机器学习和计算分析揭示与晶状体损伤的伤口愈合和纤维化结果相关的独特分子特征。

Supervised Machine-Based Learning and Computational Analysis to Reveal Unique Molecular Signatures Associated with Wound Healing and Fibrotic Outcomes to Lens Injury.

作者信息

Lalman Catherine, Stabler Kylie R, Yang Yimin, Walker Janice L

机构信息

Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.

Sidney Kimmel Medical School, Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

Int J Mol Sci. 2025 Aug 1;26(15):7422. doi: 10.3390/ijms26157422.


DOI:10.3390/ijms26157422
PMID:40806551
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12347510/
Abstract

Posterior capsule opacification (PCO), a frequent complication of cataract surgery, arises from dysregulated wound healing and fibrotic transformation of residual lens epithelial cells. While transcriptomic and machine learning (ML) approaches have elucidated fibrosis-related pathways in other tissues, the molecular divergence between regenerative and fibrotic outcomes in the lens remains unclear. Here, we used an ex vivo chick lens injury model to simulate post-surgical conditions, collecting RNA from lenses undergoing either regenerative wound healing or fibrosis between days 1-3 post-injury. Bulk RNA sequencing data were normalized, log-transformed, and subjected to univariate filtering prior to training LASSO, SVM, and RF ML models to identify discriminatory gene signatures. Each model was independently validated using a held-out test set. Distinct gene sets were identified, including fibrosis-associated genes (, gga-miR-143, RF00072) and wound-healing-associated genes (), with several achieving perfect classification. Gene Set Enrichment Analysis revealed divergent pathway activation, including extracellular matrix remodeling, DNA replication, and spliceosome associated with fibrosis. RT-PCR in independent explants confirmed key differential expression levels. These findings demonstrate the utility of supervised ML for discovering lens-specific fibrotic and regenerative gene features and nominate biomarkers for targeted intervention to mitigate PCO.

摘要

后囊膜混浊(PCO)是白内障手术常见的并发症,源于伤口愈合失调和残留晶状体上皮细胞的纤维化转变。虽然转录组学和机器学习(ML)方法已经阐明了其他组织中与纤维化相关的途径,但晶状体再生和纤维化结果之间的分子差异仍不清楚。在这里,我们使用离体鸡晶状体损伤模型来模拟术后情况,在损伤后1-3天内从经历再生性伤口愈合或纤维化的晶状体中收集RNA。在训练LASSO、支持向量机(SVM)和随机森林(RF)ML模型以识别具有鉴别性的基因特征之前,对大量RNA测序数据进行归一化、对数转换和单变量过滤。每个模型都使用留出的测试集进行独立验证。鉴定出了不同的基因集,包括与纤维化相关的基因(,gga-miR-143,RF00072)和与伤口愈合相关的基因(),其中一些实现了完美分类。基因集富集分析揭示了不同的途径激活,包括与纤维化相关的细胞外基质重塑、DNA复制和剪接体。在独立的外植体中进行的逆转录聚合酶链反应(RT-PCR)证实了关键的差异表达水平。这些发现证明了监督式ML在发现晶状体特异性纤维化和再生基因特征方面的实用性,并为减轻PCO的靶向干预提名了生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/99c085dd3202/ijms-26-07422-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/689ef2f5b7b5/ijms-26-07422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/3c1a07f17003/ijms-26-07422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/54314693ddfd/ijms-26-07422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/3ebebaef560f/ijms-26-07422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/d93589c7b13f/ijms-26-07422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/5595ac67eb97/ijms-26-07422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/048b0cb678e0/ijms-26-07422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/b08a57763b75/ijms-26-07422-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/99c085dd3202/ijms-26-07422-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/689ef2f5b7b5/ijms-26-07422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/3c1a07f17003/ijms-26-07422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/54314693ddfd/ijms-26-07422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/3ebebaef560f/ijms-26-07422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/d93589c7b13f/ijms-26-07422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/5595ac67eb97/ijms-26-07422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/048b0cb678e0/ijms-26-07422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/b08a57763b75/ijms-26-07422-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d77/12347510/99c085dd3202/ijms-26-07422-g009.jpg

相似文献

[1]
Supervised Machine-Based Learning and Computational Analysis to Reveal Unique Molecular Signatures Associated with Wound Healing and Fibrotic Outcomes to Lens Injury.

Int J Mol Sci. 2025-8-1

[2]
LIRTS Viewer: A Web-Based Resource to View the Transcriptional Response of Lens Epithelial Cells to Injury.

Invest Ophthalmol Vis Sci. 2025-7-1

[3]
Intraocular lens optic edge design for the prevention of posterior capsule opacification after cataract surgery.

Cochrane Database Syst Rev. 2021-8-16

[4]
Transcriptomic Analysis of Human Lens Epithelium Tissue With and Without Cataract Surgery: Uncovering Novel Pathways of Post-Surgical Lens Epithelium Remodeling.

Invest Ophthalmol Vis Sci. 2025-7-1

[5]
Trifocal versus extended depth of focus (EDOF) intraocular lenses after cataract extraction.

Cochrane Database Syst Rev. 2024-7-10

[6]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[7]
Identification of potential pathogenic genes associated with the comorbidity of rheumatoid arthritis and renal fibrosis using bioinformatics and machine learning.

Sci Rep. 2025-7-1

[8]
Surgical interventions for bilateral congenital cataract in children aged two years and under.

Cochrane Database Syst Rev. 2022-9-15

[9]
Types of intraocular lenses for cataract surgery in eyes with uveitis.

Cochrane Database Syst Rev. 2014-3-4

[10]
Novel Transcriptomic Signatures in Fibrostenotic Crohn's Disease: Dysregulated Pathways, Promising Biomarkers, and Putative Therapeutic Targets.

Inflamm Bowel Dis. 2025-6-13

本文引用的文献

[1]
ECM formation and degradation during fibrosis, repair, and regeneration.

NPJ Metab Health Dis. 2025-6-10

[2]
Fibroblast activation and heterogeneity in fibrotic disease.

Nat Rev Nephrol. 2025-6-19

[3]
High matrix stiffness promotes senescence of type II alveolar epithelial cells by lysosomal degradation of lamin A/C in pulmonary fibrosis.

Respir Res. 2025-4-9

[4]
Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure.

Circ Res. 2025-3-28

[5]
Identifying liver cirrhosis in patients with chronic hepatitis B: an interpretable machine learning algorithm based on LSM.

Ann Med. 2025-12

[6]
Basic biology and roles of CEBPD in cardiovascular disease.

Cell Death Discov. 2025-3-14

[7]
Machine learning-based models for advanced fibrosis in non-alcoholic steatohepatitis patients: A cohort study.

World J Gastroenterol. 2025-3-7

[8]
Machine learning selection of basement membrane-associated genes and development of a predictive model for kidney fibrosis.

Sci Rep. 2025-2-24

[9]
Identification of PANoptosis-related genes for idiopathic pulmonary fibrosis by machine learning and molecular subtype analysis.

Sci Rep. 2024-10-14

[10]
Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy.

Annu Rev Pharmacol Toxicol. 2025-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索