Blanco-Carapia Roberto E, Hernández-López Ricardo, Alcaraz-Estrada Sofía L, Sarmiento-Silva Rosa Elena, García-Hernández Montserrat Elemi, Estrada-Toledo Nancy Viridiana, Padilla-Bernal Gerardo, Herrera-Zúñiga Leonardo D, Garza Jorge, Vargas Rubicelia, González-Zamora Eduardo, Islas-Jácome Alejandro
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, Ciudad de México C.P. 09310, Mexico.
División de Medicina Genómica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Félix Cuevas 540, Col. Del Valle Sur, Benito Juárez, Ciudad de México C.P. 03100, Mexico.
Int J Mol Sci. 2025 Aug 7;26(15):7651. doi: 10.3390/ijms26157651.
A one-pot synthetic methodology that combines an Ugi-Zhu three-component reaction (UZ-3CR) with a cascade sequence (intermolecular Diels-Alder cycloaddition/intramolecular -acylation/decarboxylation/dehydration) using microwave-heating conditions, ytterbium (III) triflate (Yb(OTf)) as the catalyst, and chlorobenzene (for the first time in a multi-component reaction (MCR)) as the solvent, was developed to synthesize twelve new fluorinated-pyrrolo[3,4-]pyridin-5-ones containing a 4-amino-7-chloroquinoline moiety, yielding 50-77% in 95 min per product, with associated atom economies around 88%, also per product. Additionally, by in vitro tests, compounds and were found to effectively stop early SARS-CoV-2 replication, IC = 6.74 µM and 5.29 µM, at 0 h and 1 h respectively, while cell viability remained above 90% relative to the control vehicle at 10 µM. Additional computer-based studies revealed that the most active compounds formed strong favorable interactions with important viral proteins (M, NTDα and NTDo) of coronavirus, supporting a two-pronged approach that affects both how the virus infects the cells and how it replicates its genetic material. Finally, quantum chemistry analyses of non-covalent interactions were performed from Density-Functional Theory (DFT) to better understand how the active compounds hit the virus.
开发了一种一锅合成方法,该方法将Ugi-Zhu三组分反应(UZ-3CR)与级联反应序列(分子间狄尔斯-阿尔德环加成/分子内酰化/脱羧/脱水)相结合,使用微波加热条件、三氟甲磺酸镱(Yb(OTf))作为催化剂以及氯苯(在多组分反应(MCR)中首次使用)作为溶剂,以合成12种含有4-氨基-7-氯喹啉部分的新型氟化吡咯并[3,4-b]吡啶-5-酮,每种产物在95分钟内产率为50-77%,每种产物的原子经济性也约为88%。此外,通过体外测试发现,化合物 和 在0小时和1小时时分别能有效阻止早期SARS-CoV-2复制,IC₅₀分别为6.74 μM和5.29 μM,而在10 μM时相对于对照载体细胞活力保持在90%以上。额外的基于计算机的研究表明,活性最高的化合物与冠状病毒的重要病毒蛋白(M、NTDα和NTDo)形成了强烈的有利相互作用,支持了一种双管齐下的方法,该方法既影响病毒感染细胞的方式,也影响其复制遗传物质的方式。最后,从密度泛函理论(DFT)进行了非共价相互作用的量子化学分析,以更好地理解活性化合物如何作用于病毒。