Behera Sudarshan, Hahn David F, Wilson Carter J, Marsili Simone, Tresadern Gary, Gapsys Vytautas, de Groot Bert L
Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.
In Silico Discovery, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, 2340 Beerse, Belgium.
J Chem Inf Model. 2025 Jul 14;65(13):6927-6938. doi: 10.1021/acs.jcim.5c00947. Epub 2025 Jun 29.
Relative binding free energy (RBFE) calculations have emerged as a powerful tool in drug discovery, capable of achieving experimental-level accuracy. However, the accuracy is compromised by a multitude of factors, including the initial structure modeling. The current study contributes to the quantification of the impact of initial structure modeling on the accuracy across a diverse set of activity cliff pairs. Along with providing a quantitative relation between the resolution of the crystal structure and free energy accuracy, we also demonstrate the incorporation of a secondary solvation tool (SOLVATE) to increase the free energy accuracy, especially when crystal waters are missing. The study also evaluates the reliability of AI-predicted structures in RBFE calculations, showing their effectiveness in predicting RBFE directionality and assigning nominal resolutions to the predicted structures based on free energy accuracy. These findings provide a set of recommendations for the development of more robust RBFE protocols, informing the use of structural data, solvation techniques, and AI-predicted protein models in drug discovery.
相对结合自由能(RBFE)计算已成为药物发现中的一种强大工具,能够达到实验水平的准确性。然而,包括初始结构建模在内的多种因素会影响其准确性。本研究旨在量化初始结构建模对一系列不同活性悬崖对准确性的影响。除了提供晶体结构分辨率与自由能准确性之间的定量关系外,我们还展示了结合使用二级溶剂化工具(SOLVATE)来提高自由能准确性,特别是在缺少结晶水的情况下。该研究还评估了人工智能预测结构在RBFE计算中的可靠性,表明它们在预测RBFE方向性以及根据自由能准确性为预测结构指定名义分辨率方面的有效性。这些发现为开发更稳健的RBFE方案提供了一系列建议,为药物发现中结构数据、溶剂化技术和人工智能预测的蛋白质模型的使用提供了参考。