An Xinghan, Huang Liang, Yang Li
Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
Molecules. 2025 Aug 6;30(15):3290. doi: 10.3390/molecules30153290.
The urgent need to mitigate rising global CO emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO capture. A novel solvent/nonsolvent synthetic strategy to fabricate CaO/CaAl-layered double oxide (LDO) composites was developed, where CaAl-LDO serves as a nanostructural stabilizer. The CaAl-LDO precursor enables atomic-level dispersion of components, which upon calcination forms a CaAlO "rigid scaffold" that spatially confines CaO nanoparticles and effectively mitigates sintering. Thermogravimetric analysis results demonstrate exceptional cyclic stability; the composite achieves an initial CO uptake of 14.5 mmol/g (81.5% of theoretical capacity) and retains 87% of its capacity after 30 cycles. This performance significantly outperforms pure CaO and CaO/MgAl-LDO composites. Physicochemical characterization confirms that structural confinement preserves mesoporous channels, ensuring efficient CO diffusion. This work establishes a scalable, instrumentally simple route to high-performance sorbents, offering an efficient solution for carbon capture in energy-intensive industries such as power generation and steel manufacturing.
缓解全球二氧化碳排放量不断上升的迫切需求推动了高效碳捕获技术的发展。本研究解决了基于CaO的吸附剂在高温二氧化碳捕获过程中因烧结导致性能下降这一长期存在的挑战。开发了一种新颖的溶剂/非溶剂合成策略来制备CaO/CaAl层状双氢氧化物(LDO)复合材料,其中CaAl-LDO作为纳米结构稳定剂。CaAl-LDO前驱体能够实现各组分的原子级分散,煅烧后形成CaAlO“刚性支架”,在空间上限制CaO纳米颗粒并有效减轻烧结。热重分析结果表明该复合材料具有卓越的循环稳定性;该复合材料的初始二氧化碳吸收量为14.5 mmol/g(理论容量的81.5%),经过30次循环后仍保留其容量的87%。这一性能显著优于纯CaO和CaO/MgAl-LDO复合材料。物理化学表征证实结构限制保留了介孔通道,确保了高效的二氧化碳扩散。这项工作建立了一条可扩展、仪器简单的高性能吸附剂制备路线,为发电和钢铁制造等能源密集型行业的碳捕获提供了一种有效的解决方案。