Wei Lifei, Han Rui, Han Gaoqi, Yan Han, Peng Mingke, Li Zhiyong, Song Chunfeng, Liu Qingling
Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China.
State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
Adv Sci (Weinh). 2025 Jul;12(26):e2503086. doi: 10.1002/advs.202503086. Epub 2025 Mar 26.
Integrated CO capture and utilization technology based on the calcium looping is burgeoning as an economical and viable strategy for achieving Carbon Neutrality. However, the drawback of easy sintering of CaO limits its potential to maximize CO capture and conversion. Here, a low-temperature hydrogen spillover decomposition strategy is proposed to synthesize high-performance CaO-based dual-functional material. This strategy significantly shortens the existence time of the transition state CaO*, enabling CaCO to be converted into CaO more rapidly. Compared with the traditional sol-gel method, the sintering of CaO is more effectively inhibited. Specifically, NiCa-400 achieves a CO capture of 17.8 mmol g (theoretical value of 17.8 mmol g), a CH yield of 17.2 mmol g (192% higher than the conventional method), and a CH selectivity of 97%. In addition, scale-up experimental studies further demonstrated its practical scalability. Guided by techno-economic analysis, coupling the proposed strategy with a coal-fired power plant can reduce energy consumption by 79% and save investment costs by 23% compared with a conventional carbon capture and utilization (CCU). This work bridges the gap between the actual and theoretical properties of traditional calcium-based dual-functional materials and provides a new solution for the high-value utilization of carbonates.
基于钙循环的集成式二氧化碳捕集与利用技术正在蓬勃发展,成为实现碳中和的一种经济可行策略。然而,氧化钙易于烧结的缺点限制了其最大限度地提高二氧化碳捕集与转化的潜力。在此,提出了一种低温氢溢流分解策略来合成高性能的氧化钙基双功能材料。该策略显著缩短了过渡态氧化钙*的存在时间,使碳酸钙能更快地转化为氧化钙。与传统的溶胶-凝胶法相比,氧化钙的烧结得到了更有效的抑制。具体而言,NiCa-400实现了17.8 mmol g的二氧化碳捕集量(理论值为17.8 mmol g)、17.2 mmol g的甲烷产率(比传统方法高192%)以及97%的甲烷选择性。此外,放大实验研究进一步证明了其实际可扩展性。在技术经济分析的指导下,与传统的碳捕集与利用(CCU)相比,将所提出的策略与燃煤电厂相结合可降低79%的能源消耗并节省23%的投资成本。这项工作弥合了传统钙基双功能材料实际性能与理论性能之间的差距,并为碳酸盐的高值利用提供了一种新的解决方案。