Suppr超能文献

EPCNet:利用基于事件的相机和基于帧的相机的传感器融合实现“人工中央凹”以进行更高效的监测。

EPCNet: Implementing an 'Artificial Fovea' for More Efficient Monitoring Using the Sensor Fusion of an Event-Based and a Frame-Based Camera.

作者信息

Sealy Phelan Orla, Molloy Dara, George Roshan, Jones Edward, Glavin Martin, Deegan Brian

机构信息

Department of Electrical and Electronic Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland.

Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland.

出版信息

Sensors (Basel). 2025 Jul 22;25(15):4540. doi: 10.3390/s25154540.

Abstract

Efficient object detection is crucial to real-time monitoring applications such as autonomous driving or security systems. Modern RGB cameras can produce high-resolution images for accurate object detection. However, increased resolution results in increased network latency and power consumption. To minimise this latency, Convolutional Neural Networks (CNNs) often have a resolution limitation, requiring images to be down-sampled before inference, causing significant information loss. Event-based cameras are neuromorphic vision sensors with high temporal resolution, low power consumption, and high dynamic range, making them preferable to regular RGB cameras in many situations. This project proposes the fusion of an event-based camera with an RGB camera to mitigate the trade-off between temporal resolution and accuracy, while minimising power consumption. The cameras are calibrated to create a multi-modal stereo vision system where pixel coordinates can be projected between the event and RGB camera image planes. This calibration is used to project bounding boxes detected by clustering of events into the RGB image plane, thereby cropping each RGB frame instead of down-sampling to meet the requirements of the CNN. Using the Common Objects in Context (COCO) dataset evaluator, the average precision (AP) for the bicycle class in RGB scenes improved from 21.08 to 57.38. Additionally, AP increased across all classes from 37.93 to 46.89. To reduce system latency, a novel object detection approach is proposed where the event camera acts as a region proposal network, and a classification algorithm is run on the proposed regions. This achieved a 78% improvement over baseline.

摘要

高效的目标检测对于自动驾驶或安全系统等实时监控应用至关重要。现代RGB相机可以生成高分辨率图像以进行精确的目标检测。然而,分辨率的提高会导致网络延迟和功耗增加。为了最小化这种延迟,卷积神经网络(CNN)通常存在分辨率限制,需要在推理前对图像进行下采样,这会导致大量信息丢失。基于事件的相机是具有高时间分辨率、低功耗和高动态范围的神经形态视觉传感器,使其在许多情况下比普通RGB相机更具优势。该项目提出将基于事件的相机与RGB相机融合,以减轻时间分辨率和准确性之间的权衡,同时将功耗降至最低。对相机进行校准以创建一个多模态立体视觉系统,其中像素坐标可以在事件相机和RGB相机的图像平面之间投影。这种校准用于将通过事件聚类检测到的边界框投影到RGB图像平面中,从而裁剪每个RGB帧而不是进行下采样以满足CNN的要求。使用上下文常见物体(COCO)数据集评估器,RGB场景中自行车类别的平均精度(AP)从21.08提高到了57.38。此外,所有类别的AP从37.93提高到了46.89。为了降低系统延迟,提出了一种新颖的目标检测方法,其中事件相机充当区域提议网络,并在所提议的区域上运行分类算法。这比基线提高了78%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fac/12349060/23164b173700/sensors-25-04540-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验