Suppr超能文献

评估用于乳腺体模重建的移动3D成像应用的准确性和可重复性。

Evaluating the Accuracy and Repeatability of Mobile 3D Imaging Applications for Breast Phantom Reconstruction.

作者信息

Botti Elena, Jansen Bart, Ballen-Moreno Felipe, Kapila Ayush, Brahimetaj Redona

机构信息

Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.

出版信息

Sensors (Basel). 2025 Jul 24;25(15):4596. doi: 10.3390/s25154596.

Abstract

Three-dimensional imaging technologies are increasingly used in breast reconstructive and plastic surgery due to their potential for efficient and accurate preoperative assessment and planning. This study systematically evaluates the accuracy and consistency of six commercially available 3D scanning applications (apps)-Structure Sensor, 3D Scanner App, Heges, Polycam, SureScan, and Kiri-in reconstructing the female torso. To avoid variability introduced by human subjects, a silicone breast mannequin model was scanned, with fiducial markers placed at known anatomical landmarks. Manual distance measurements were obtained using calipers by two independent evaluators and compared to digital measurements extracted from 3D reconstructions in Blender software. Each scan was repeated six times per application to ensure reliability. SureScan demonstrated the lowest mean error (2.9 mm), followed by Structure Sensor (3.0 mm), Heges (3.6 mm), 3D Scanner App (4.4 mm), Kiri (5.0 mm), and Polycam (21.4 mm), which showed the highest error and variability. Even the app using an external depth sensor (Structure Sensor) showed no statistically significant accuracy advantage over those using only the iPad's built-in camera (except for Polycam), underscoring that software is the primary driver of performance, not hardware (alone). This work provides practical insights for selecting mobile 3D scanning tools in clinical workflows and highlights key limitations, such as scaling errors and alignment artifacts. Future work should include patient-based validation and explore deep learning to enhance reconstruction quality. Ultimately, this study lays the foundation for more accessible and cost-effective 3D imaging in surgical practice, showing that smartphone-based tools can produce clinically useful scans.

摘要

由于三维成像技术在术前评估和规划方面具有高效、准确的潜力,因此在乳房重建和整形手术中越来越多地被使用。本研究系统评估了六种商用3D扫描应用程序(应用)——Structure Sensor、3D Scanner App、Heges、Polycam、SureScan和Kiri——在重建女性躯干方面的准确性和一致性。为避免人体受试者引入的变异性,对硅胶乳房模型进行了扫描,并在已知的解剖标志点放置了基准标记。两名独立评估人员使用卡尺进行手动距离测量,并与在Blender软件中从3D重建中提取的数字测量结果进行比较。每个应用程序对每次扫描重复六次以确保可靠性。SureScan的平均误差最低(2.9毫米),其次是Structure Sensor(3.0毫米)、Heges(3.6毫米)、3D Scanner App(4.4毫米)、Kiri(5.0毫米)和Polycam(21.4毫米),后者显示出最高的误差和变异性。即使是使用外部深度传感器的应用程序(Structure Sensor),与仅使用iPad内置摄像头的应用程序相比(除了Polycam),也没有显示出统计学上显著的准确性优势,这突出表明软件是性能的主要驱动因素,而不是硬件(单独)。这项工作为在临床工作流程中选择移动3D扫描工具提供了实用见解,并突出了关键限制,如缩放误差和对齐伪影。未来的工作应包括基于患者的验证,并探索深度学习以提高重建质量。最终,本研究为手术实践中更易于获取和成本效益更高的3D成像奠定了基础,表明基于智能手机的工具可以产生临床有用的扫描结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a8/12349111/3a4765e73f04/sensors-25-04596-g001.jpg

相似文献

3
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.
Cochrane Database Syst Rev. 2015 Jul 27;2015(7):MR000042. doi: 10.1002/14651858.MR000042.pub2.
4
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.
5
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.
6
Smartphone and tablet self management apps for asthma.
Cochrane Database Syst Rev. 2013 Nov 27;2013(11):CD010013. doi: 10.1002/14651858.CD010013.pub2.
7
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.

本文引用的文献

2
Comparative assessment of breast volume using a smartphone device versus MRI.
Breast Cancer. 2025 Jan;32(1):166-176. doi: 10.1007/s12282-024-01647-6. Epub 2024 Nov 15.
4
Learning continuous shape priors from sparse data with neural implicit functions.
Med Image Anal. 2024 May;94:103099. doi: 10.1016/j.media.2024.103099. Epub 2024 Feb 8.
5
Robust 3D breast reconstruction based on monocular images and artificial intelligence for robotic guided oncological interventions.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10341168.
6
Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013-2023).
Comput Biol Med. 2023 Oct;165:107441. doi: 10.1016/j.compbiomed.2023.107441. Epub 2023 Sep 1.
7
MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3843-3848. doi: 10.1109/EMBC48229.2022.9871757.
8
Evaluation of 3D Face-Scan images obtained by stereophotogrammetry and smartphone camera.
Int Orthod. 2021 Dec;19(4):669-678. doi: 10.1016/j.ortho.2021.08.007. Epub 2021 Sep 17.
10
Monofrequency electrical impedance mammography (EIM) diagnostic system in breast cancer screening.
BMC Cancer. 2020 Sep 14;20(1):876. doi: 10.1186/s12885-020-07283-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验