文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在使用时间融合变换器进行个性化血糖预测中纳入不确定性估计和可解释性。

Incorporating Uncertainty Estimation and Interpretability in Personalized Glucose Prediction Using the Temporal Fusion Transformer.

作者信息

Rodriguez-Almeida Antonio J, Betancort Carmelo, Wägner Ana M, Callico Gustavo M, Fabelo Himar

机构信息

Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, ULPGC, 35017 Las Palmas de Gran Canaria, Spain.

Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno-Infantil, CHUIMI, 35016 Las Palmas de Gran Canaria, Spain.

出版信息

Sensors (Basel). 2025 Jul 26;25(15):4647. doi: 10.3390/s25154647.


DOI:10.3390/s25154647
PMID:40807812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349322/
Abstract

More than 14% of the world's population suffered from diabetes mellitus in 2022. This metabolic condition is defined by increased blood glucose concentrations. Among the different types of diabetes, type 1 diabetes, caused by a lack of insulin secretion, is particularly challenging to treat. In this regard, automatic glucose level estimation implements Continuous Glucose Monitoring (CGM) devices, showing positive therapeutic outcomes. AI-based glucose prediction has commonly followed a deterministic approach, usually with a lack of interpretability. Therefore, these AI-based methods do not provide enough information in critical decision-making scenarios, like in the medical field. This work intends to provide accurate, interpretable, and personalized glucose prediction using the Temporal Fusion Transformer (TFT), and also includes an uncertainty estimation. The TFT was trained using two databases, an in-house-collected dataset and the OhioT1DM dataset, commonly used for glucose forecasting benchmarking. For both datasets, the set of input features to train the model was varied to assess their impact on model interpretability and prediction performance. Models were evaluated using common prediction metrics, diabetes-specific metrics, uncertainty estimation, and interpretability of the model, including feature importance and attention. The obtained results showed that TFT outperforms existing methods in terms of RMSE by at least 13% for both datasets.

摘要

2022年,全球超过14%的人口患有糖尿病。这种代谢性疾病的定义是血糖浓度升高。在不同类型的糖尿病中,由胰岛素分泌不足引起的1型糖尿病在治疗上尤其具有挑战性。在这方面,自动血糖水平估计采用了连续血糖监测(CGM)设备,显示出积极的治疗效果。基于人工智能的血糖预测通常采用确定性方法,通常缺乏可解释性。因此,这些基于人工智能的方法在关键决策场景中,如在医疗领域,无法提供足够的信息。这项工作旨在使用时间融合Transformer(TFT)提供准确、可解释且个性化的血糖预测,并且还包括不确定性估计。TFT使用两个数据库进行训练,一个是内部收集的数据集,另一个是常用于血糖预测基准测试的俄亥俄T1DM数据集。对于这两个数据集,训练模型的输入特征集有所不同,以评估它们对模型可解释性和预测性能的影响。使用常见的预测指标、糖尿病特定指标、不确定性估计以及模型的可解释性(包括特征重要性和注意力)对模型进行评估。获得的结果表明,对于这两个数据集,TFT在均方根误差(RMSE)方面比现有方法至少高出13%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/cfa22cf3643b/sensors-25-04647-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/584e4689997a/sensors-25-04647-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/0cae6fa5c863/sensors-25-04647-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/765a23f74ef0/sensors-25-04647-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/cfa22cf3643b/sensors-25-04647-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/584e4689997a/sensors-25-04647-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/0cae6fa5c863/sensors-25-04647-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/765a23f74ef0/sensors-25-04647-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1fd/12349322/cfa22cf3643b/sensors-25-04647-g004.jpg

相似文献

[1]
Incorporating Uncertainty Estimation and Interpretability in Personalized Glucose Prediction Using the Temporal Fusion Transformer.

Sensors (Basel). 2025-7-26

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Hybrid closed-loop systems for managing blood glucose levels in type 1 diabetes: a systematic review and economic modelling.

Health Technol Assess. 2024-12

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Techniques of monitoring blood glucose during pregnancy for women with pre-existing diabetes.

Cochrane Database Syst Rev. 2017-6-11

[6]
Preexisting Diabetes and Pregnancy: An Endocrine Society and European Society of Endocrinology Joint Clinical Practice Guideline.

Eur J Endocrinol. 2025-6-30

[7]
Preexisting Diabetes and Pregnancy: An Endocrine Society and European Society of Endocrinology Joint Clinical Practice Guideline.

J Clin Endocrinol Metab. 2025-7-13

[8]
The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review.

J Med Internet Res. 2023-3-14

[9]
Continuous glucose monitoring systems for type 1 diabetes mellitus.

Cochrane Database Syst Rev. 2012-1-18

[10]
Integrated sensor-augmented pump therapy systems [the MiniMed® Paradigm™ Veo system and the Vibe™ and G4® PLATINUM CGM (continuous glucose monitoring) system] for managing blood glucose levels in type 1 diabetes: a systematic review and economic evaluation.

Health Technol Assess. 2016-2

本文引用的文献

[1]
An AI-based module for interstitial glucose forecasting enabling a "Do-It-Yourself" application for people with type 1 diabetes.

Front Digit Health. 2025-6-13

[2]
A perspective on harmonizing diabetes management datasets.

Data Brief. 2025-2-17

[3]
New advances in type 1 diabetes.

BMJ. 2024-1-26

[4]
Population-Specific Glucose Prediction in Diabetes Care With Transformer-Based Deep Learning on the Edge.

IEEE Trans Biomed Circuits Syst. 2024-4

[5]
Diabetes and artificial intelligence beyond the closed loop: a review of the landscape, promise and challenges.

Diabetologia. 2024-2

[6]
Understanding temporal changes and seasonal variations in glycemic trends using wearable data.

Sci Adv. 2023-9-22

[7]
Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges.

J Med Internet Res. 2023-5-4

[8]
Wearable Devices in Cardiovascular Medicine.

Circ Res. 2023-3-3

[9]
Investigating Temporal Patterns of Glycemic Control around Holidays.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[10]
Emerging Artificial Intelligence-Empowered mHealth: Scoping Review.

JMIR Mhealth Uhealth. 2022-6-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索