Rodriguez-Almeida Antonio J, Betancort Carmelo, Wägner Ana M, Callico Gustavo M, Fabelo Himar
Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, ULPGC, 35017 Las Palmas de Gran Canaria, Spain.
Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno-Infantil, CHUIMI, 35016 Las Palmas de Gran Canaria, Spain.
Sensors (Basel). 2025 Jul 26;25(15):4647. doi: 10.3390/s25154647.
More than 14% of the world's population suffered from diabetes mellitus in 2022. This metabolic condition is defined by increased blood glucose concentrations. Among the different types of diabetes, type 1 diabetes, caused by a lack of insulin secretion, is particularly challenging to treat. In this regard, automatic glucose level estimation implements Continuous Glucose Monitoring (CGM) devices, showing positive therapeutic outcomes. AI-based glucose prediction has commonly followed a deterministic approach, usually with a lack of interpretability. Therefore, these AI-based methods do not provide enough information in critical decision-making scenarios, like in the medical field. This work intends to provide accurate, interpretable, and personalized glucose prediction using the Temporal Fusion Transformer (TFT), and also includes an uncertainty estimation. The TFT was trained using two databases, an in-house-collected dataset and the OhioT1DM dataset, commonly used for glucose forecasting benchmarking. For both datasets, the set of input features to train the model was varied to assess their impact on model interpretability and prediction performance. Models were evaluated using common prediction metrics, diabetes-specific metrics, uncertainty estimation, and interpretability of the model, including feature importance and attention. The obtained results showed that TFT outperforms existing methods in terms of RMSE by at least 13% for both datasets.
2022年,全球超过14%的人口患有糖尿病。这种代谢性疾病的定义是血糖浓度升高。在不同类型的糖尿病中,由胰岛素分泌不足引起的1型糖尿病在治疗上尤其具有挑战性。在这方面,自动血糖水平估计采用了连续血糖监测(CGM)设备,显示出积极的治疗效果。基于人工智能的血糖预测通常采用确定性方法,通常缺乏可解释性。因此,这些基于人工智能的方法在关键决策场景中,如在医疗领域,无法提供足够的信息。这项工作旨在使用时间融合Transformer(TFT)提供准确、可解释且个性化的血糖预测,并且还包括不确定性估计。TFT使用两个数据库进行训练,一个是内部收集的数据集,另一个是常用于血糖预测基准测试的俄亥俄T1DM数据集。对于这两个数据集,训练模型的输入特征集有所不同,以评估它们对模型可解释性和预测性能的影响。使用常见的预测指标、糖尿病特定指标、不确定性估计以及模型的可解释性(包括特征重要性和注意力)对模型进行评估。获得的结果表明,对于这两个数据集,TFT在均方根误差(RMSE)方面比现有方法至少高出13%。
Cochrane Database Syst Rev. 2017-6-11
J Clin Endocrinol Metab. 2025-7-13
Cochrane Database Syst Rev. 2012-1-18
Data Brief. 2025-2-17
BMJ. 2024-1-26
IEEE Trans Biomed Circuits Syst. 2024-4
Circ Res. 2023-3-3
Annu Int Conf IEEE Eng Med Biol Soc. 2022-7
JMIR Mhealth Uhealth. 2022-6-9