Rodriguez-Almeida Antonio J, Socorro-Marrero Guillermo V, Betancort Carmelo, Zamora-Zamorano Garlene, Deniz-Garcia Alejandro, Álvarez-Malé María L, Årsand Eirik, Soguero-Ruiz Cristina, Wägner Ana M, Granja Conceição, Callico Gustavo M, Fabelo Himar
Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, ULPGC, Las Palmas de Gran Canaria, Spain.
Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno-Infantil, CHUIMI, Las Palmas de Gran Canaria, Spain.
Front Digit Health. 2025 Jun 13;7:1534830. doi: 10.3389/fdgth.2025.1534830. eCollection 2025.
Diabetes mellitus (DM) is a chronic condition defined by increased blood glucose that affects more than 500 million adults. Type 1 diabetes (T1D) needs to be treated with insulin. Keeping glucose within the desired range is challenging. Despite the advances in the mHealth field, the appearance of the do-it-yourself (DIY) tools, and the progress in glucose level prediction based on deep learning (DL), these tools fail to engage the users in the long-term. This limits the benefits that they could have on the daily T1D self-management, specifically by providing an accurate prediction of their short-term glucose level.
This work proposed a DL-based DIY framework for interstitial glucose prediction using continuous glucose monitoring (CGM) data to generate one personalized DL model per user, without using data from other people. The DIY module reads the CGM raw data (as it would be uploaded by the potential users of this tool), and automatically prepares them to train and validate a DL model to perform glucose predictions up to one hour ahead. For training and validation, 1 year of CGM data collected from 29 subjects with T1D were used.
Results showed prediction performance comparable to the state-of-the-art, using only CGM data. To the best of our knowledge, this work is the first one in providing a DL-based DIY approach for fully personalized glucose prediction. Moreover, this framework is open source and has been deployed in Docker, enabling its standalone use, its integration on a smartphone application, or the experimentation with novel DL architectures.
糖尿病(DM)是一种由血糖升高定义的慢性疾病,影响着超过5亿成年人。1型糖尿病(T1D)需要用胰岛素治疗。将血糖保持在理想范围内具有挑战性。尽管移动健康领域取得了进展,出现了自助式(DIY)工具,并且基于深度学习(DL)的血糖水平预测也取得了进步,但这些工具未能让用户长期参与。这限制了它们在T1D日常自我管理中可能带来的益处,特别是在准确预测短期血糖水平方面。
这项工作提出了一个基于DL的DIY框架,用于使用连续血糖监测(CGM)数据进行组织间液葡萄糖预测,为每个用户生成一个个性化的DL模型,不使用其他人的数据。DIY模块读取CGM原始数据(就像该工具的潜在用户上传的那样),并自动对其进行准备,以训练和验证一个DL模型,从而提前一小时进行血糖预测。为了进行训练和验证,使用了从29名T1D受试者收集的1年CGM数据。
结果表明,仅使用CGM数据时,预测性能与最先进的方法相当。据我们所知,这项工作是第一个提供基于DL的DIY方法进行完全个性化血糖预测的。此外,这个框架是开源的,并且已经部署在Docker中,使其能够独立使用、集成到智能手机应用程序中,或者用于新型DL架构的实验。