Suppr超能文献

一种用于低地球轨道卫星振荡器的多约束协同优化线性二次型高斯频率控制方法。

A Multi-Constraint Co-Optimization LQG Frequency Steering Method for LEO Satellite Oscillators.

作者信息

Wang Dongdong, Liao Wenhe, Liu Bin, Yu Qianghua

机构信息

School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Beijing Research Institute of Telemetry, China Aerospace Science and Technology Corporation, Beijing 100094, China.

出版信息

Sensors (Basel). 2025 Jul 31;25(15):4733. doi: 10.3390/s25154733.

Abstract

High-precision time-frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The inherent long-term stability of OCXOs leads to rapid clock error accumulation, severely degrading positioning accuracy. To simultaneously balance multi-dimensional requirements such as clock bias accuracy, and frequency stability and phase continuity, this study proposes a linear quadratic Gaussian (LQG) frequency precision steering method that integrates a four-dimensional constraint integrated (FDCI) model and hierarchical weight optimization. An improved system error model is refined to quantify the covariance components (Σ, Σ) of the LQG closed-loop control system. Then, based on the FDCI model that explicitly incorporates quantization noise, frequency adjustment, frequency stability, and clock bias variance, a priority-driven collaborative optimization mechanism systematically determines the weight matrices, ensuring a robust tradeoff among multiple performance criteria. Experiments on OCXO payload products, with micro-step actuation, demonstrate that the proposed method reduces the clock error RMS to 0.14 ns and achieves multi-timescale stability enhancement. The short-to-long-term frequency stability reaches 9.38 × 10 at 100 s, and long-term frequency stability is 4.22 × 10 at 10,000 s, representing three orders of magnitude enhancement over a free-running OCXO. Compared to conventional PID control (clock bias RMS 0.38 ns) and pure Kalman filtering (stability 6.1 × 10 at 10,000 s), the proposed method reduces clock bias by 37% and improves stability by 93%. The impact of quantization noise on short-term stability (1-40 s) is contained within 13%. The principal novelty arises from the systematic integration of theoretical constraints and performance optimization within a unified framework. This approach comprehensively enhances the time-frequency performance of OCXOs, providing a low-cost, high-precision timing-frequency reference solution for LEO satellites.

摘要

高精度时频系统对于低地球轨道(LEO)导航卫星实现实时(RT)厘米级定位服务至关重要。然而,受严格的尺寸、功率和成本限制,LEO卫星通常配备恒温晶体振荡器(OCXO)作为系统时钟。OCXO固有的长期稳定性会导致时钟误差快速累积,严重降低定位精度。为了同时平衡时钟偏差精度、频率稳定性和相位连续性等多维度要求,本研究提出了一种线性二次高斯(LQG)频率精度控制方法,该方法集成了四维约束集成(FDCI)模型和分层权重优化。改进了系统误差模型,以量化LQG闭环控制系统的协方差分量(Σ,Σ)。然后,基于明确纳入量化噪声、频率调整、频率稳定性和时钟偏差方差的FDCI模型,一种优先级驱动的协同优化机制系统地确定权重矩阵,确保在多个性能标准之间进行稳健的权衡。对具有微步驱动的OCXO有效载荷产品进行的实验表明,该方法将时钟误差均方根降低到0.14 ns,并实现了多时间尺度稳定性增强。短期到长期频率稳定性在100 s时达到9.38×10,长期频率稳定性在10000 s时为4.22×10,比自由运行的OCXO提高了三个数量级。与传统的PID控制(时钟偏差均方根为0.38 ns)和纯卡尔曼滤波(10000 s时稳定性为6.1×10)相比,该方法将时钟偏差降低了37%,并将稳定性提高了93%。量化噪声对短期稳定性(1 - 40 s)的影响控制在13%以内。主要创新点在于在统一框架内系统地整合理论约束和性能优化。这种方法全面提高了OCXO的时频性能,为LEO卫星提供了一种低成本、高精度的定时频率参考解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验