Suppr超能文献

WeatherClean:一种用于恶劣天气下基于无人机的铁路巡检的图像恢复算法。

WeatherClean: An Image Restoration Algorithm for UAV-Based Railway Inspection in Adverse Weather.

作者信息

Wang Kewen, Yang Shaobing, Zhang Zexuan, Wang Zhipeng, Jia Limin, Li Mengwei, Yu Shengjia

机构信息

School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China.

China Energy Investment Group Co., Ltd. and Xinshuo Railway Co., Ltd. Communications Technology Branch, Ordos 014300, China.

出版信息

Sensors (Basel). 2025 Aug 4;25(15):4799. doi: 10.3390/s25154799.

Abstract

UAV-based inspections are an effective way to ensure railway safety and have gained significant attention. However, images captured during complex weather conditions, such as rain, snow, or fog, often suffer from severe degradation, affecting image recognition accuracy. Existing algorithms for removing rain, snow, and fog have two main limitations: they do not adaptively learn features under varying weather complexities and struggle with managing complex noise patterns in drone inspections, leading to incomplete noise removal. To address these challenges, this study proposes a novel framework for removing rain, snow, and fog from drone images, called WeatherClean. This framework introduces a Weather Complexity Adjustment Factor (WCAF) in a parameterized adjustable network architecture to process weather degradation of varying degrees adaptively. It also employs a hierarchical multi-scale cropping strategy to enhance the recovery of fine noise and edge structures. Additionally, it incorporates a degradation synthesis method based on atmospheric scattering physical models to generate training samples that align with real-world weather patterns, thereby mitigating data scarcity issues. Experimental results show that WeatherClean outperforms existing methods by effectively removing noise particles while preserving image details. This advancement provides more reliable high-definition visual references for drone-based railway inspections, significantly enhancing inspection capabilities under complex weather conditions and ensuring the safety of railway operations.

摘要

基于无人机的巡检是确保铁路安全的有效方式,并已受到广泛关注。然而,在雨、雪或雾等复杂天气条件下拍摄的图像往往会严重退化,影响图像识别精度。现有的去除雨、雪和雾的算法有两个主要局限性:它们无法在不同的天气复杂性下自适应地学习特征,并且在处理无人机巡检中的复杂噪声模式时存在困难,导致噪声去除不彻底。为应对这些挑战,本研究提出了一种从无人机图像中去除雨、雪和雾的新颖框架,称为WeatherClean。该框架在参数化可调网络架构中引入了天气复杂性调整因子(WCAF),以自适应地处理不同程度的天气退化。它还采用了分层多尺度裁剪策略来增强精细噪声和边缘结构的恢复。此外,它结合了基于大气散射物理模型的退化合成方法来生成与真实世界天气模式相符的训练样本,从而缓解数据稀缺问题。实验结果表明,WeatherClean在有效去除噪声颗粒的同时保留图像细节,优于现有方法。这一进展为基于无人机的铁路巡检提供了更可靠的高清视觉参考,显著增强了复杂天气条件下的巡检能力,并确保了铁路运营的安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1af/12349466/93b7b5d1c55e/sensors-25-04799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验