Suppr超能文献

用于高精度工业机器人抓取与放置应用的基于视觉的6D位姿分析解决方案。

Vision-Based 6D Pose Analytics Solution for High-Precision Industrial Robot Pick-and-Place Applications.

作者信息

Balasubramanian Balamurugan, Cetin Kamil

机构信息

Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Cigli, 35620 Izmir, Türkiye.

Eren Brake Linings, Kemalpasa, 35170 Izmir, Türkiye.

出版信息

Sensors (Basel). 2025 Aug 6;25(15):4824. doi: 10.3390/s25154824.

Abstract

High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, Horgen, Switzerland) robot arm to pick up metal plates from various locations and place them into a precisely defined slot on a brake pad production line. The system uses a fixed eye-to-hand Intel RealSense D435 RGB-D camera (manufactured by Intel Corporation, Santa Clara, California, USA) to capture color and depth data. A robust software infrastructure developed in LabVIEW (ver.2019) integrated with the NI Vision (ver.2019) library processes the images through a series of steps, including particle filtering, equalization, and pattern matching, to determine the X-Y positions and Z-axis rotation of the object. The Z-position of the object is calculated from the camera's intensity data, while the remaining X-Y rotation angles are determined using the angle-of-inclination analytics method. It is experimentally verified that the proposed analytical solution outperforms the hybrid-based method (YOLO-v8 combined with PnP/RANSAC algorithms). Experimental results across four distinct picking scenarios demonstrate the proposed solution's superior accuracy, with position errors under 2 mm, orientation errors below 1°, and a perfect success rate in pick-and-place tasks.

摘要

对于制造中的工业机器人手臂而言,用于抓取和放置操作的高精度6D位姿估计仍然是一个关键问题。本研究针对实际工业应用引入了一种基于分析的6D位姿估计解决方案:它使史陶比尔TX2-60L(由瑞士豪根的史陶比尔国际股份公司制造)机器人手臂能够从不同位置拾取金属板,并将其放置在刹车片生产线上精确指定的插槽中。该系统使用固定的手眼英特尔实感D435 RGB-D相机(由美国加利福尼亚州圣克拉拉的英特尔公司制造)来捕获颜色和深度数据。在LabVIEW(2019版)中开发并与NI Vision(2019版)库集成的强大软件基础设施通过一系列步骤(包括粒子滤波、均衡和模式匹配)处理图像,以确定物体的X-Y位置和Z轴旋转。物体的Z位置根据相机的强度数据计算得出,而其余的X-Y旋转角度则使用倾斜角分析方法确定。实验验证了所提出的分析解决方案优于基于混合的方法(YOLO-v8与PnP/RANSAC算法相结合)。在四种不同抓取场景下的实验结果表明,所提出的解决方案具有卓越的精度,位置误差在2毫米以内,方向误差低于1°,并且在抓取和放置任务中成功率完美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e23/12349580/7756f4fbe8f2/sensors-25-04824-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验