Balasubramanian Balamurugan, Cetin Kamil
Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, Cigli, 35620 Izmir, Türkiye.
Eren Brake Linings, Kemalpasa, 35170 Izmir, Türkiye.
Sensors (Basel). 2025 Aug 6;25(15):4824. doi: 10.3390/s25154824.
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, Horgen, Switzerland) robot arm to pick up metal plates from various locations and place them into a precisely defined slot on a brake pad production line. The system uses a fixed eye-to-hand Intel RealSense D435 RGB-D camera (manufactured by Intel Corporation, Santa Clara, California, USA) to capture color and depth data. A robust software infrastructure developed in LabVIEW (ver.2019) integrated with the NI Vision (ver.2019) library processes the images through a series of steps, including particle filtering, equalization, and pattern matching, to determine the X-Y positions and Z-axis rotation of the object. The Z-position of the object is calculated from the camera's intensity data, while the remaining X-Y rotation angles are determined using the angle-of-inclination analytics method. It is experimentally verified that the proposed analytical solution outperforms the hybrid-based method (YOLO-v8 combined with PnP/RANSAC algorithms). Experimental results across four distinct picking scenarios demonstrate the proposed solution's superior accuracy, with position errors under 2 mm, orientation errors below 1°, and a perfect success rate in pick-and-place tasks.
对于制造中的工业机器人手臂而言,用于抓取和放置操作的高精度6D位姿估计仍然是一个关键问题。本研究针对实际工业应用引入了一种基于分析的6D位姿估计解决方案:它使史陶比尔TX2-60L(由瑞士豪根的史陶比尔国际股份公司制造)机器人手臂能够从不同位置拾取金属板,并将其放置在刹车片生产线上精确指定的插槽中。该系统使用固定的手眼英特尔实感D435 RGB-D相机(由美国加利福尼亚州圣克拉拉的英特尔公司制造)来捕获颜色和深度数据。在LabVIEW(2019版)中开发并与NI Vision(2019版)库集成的强大软件基础设施通过一系列步骤(包括粒子滤波、均衡和模式匹配)处理图像,以确定物体的X-Y位置和Z轴旋转。物体的Z位置根据相机的强度数据计算得出,而其余的X-Y旋转角度则使用倾斜角分析方法确定。实验验证了所提出的分析解决方案优于基于混合的方法(YOLO-v8与PnP/RANSAC算法相结合)。在四种不同抓取场景下的实验结果表明,所提出的解决方案具有卓越的精度,位置误差在2毫米以内,方向误差低于1°,并且在抓取和放置任务中成功率完美。