Suppr超能文献

基于点云几何信息预测的工业零件6D位姿估计用于机器人抓取

6D Pose Estimation of Industrial Parts Based on Point Cloud Geometric Information Prediction for Robotic Grasping.

作者信息

Zhang Qinglei, Xue Cuige, Qin Jiyun, Duan Jianguo, Zhou Ying

机构信息

China Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai 201306, China.

Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China.

出版信息

Entropy (Basel). 2024 Nov 26;26(12):1022. doi: 10.3390/e26121022.

Abstract

In industrial robotic arm gripping operations within disordered environments, the loss of physical information on the object's surface is often caused by changes such as varying lighting conditions, weak surface textures, and sensor noise. This leads to inaccurate object detection and pose estimation information. A method for industrial object pose estimation using point cloud data is proposed to improve pose estimation accuracy. During the feature extraction process, both global and local information are captured by integrating the appearance features of RGB images with the geometric features of point clouds. Integrating semantic information with instance features effectively distinguishes instances of similar objects. The fusion of depth information and RGB color channels enriches spatial context and structure. A cross-entropy loss function is employed for multi-class target classification, and a discriminative loss function enables instance segmentation. A novel point cloud registration method is also introduced to address re-projection errors when mapping 3D keypoints to 2D planes. This method utilizes 3D geometric information, extracting edge features using point cloud curvature and normal vectors, and registers them with models to obtain accurate pose information. Experimental results demonstrate that the proposed method is effective and superior on the LineMod and YCB-Video datasets. Finally, objects are grasped by deploying a robotic arm on the grasping platform.

摘要

在无序环境中的工业机器人手臂抓取操作中,物体表面物理信息的丢失通常是由光照条件变化、表面纹理薄弱和传感器噪声等因素引起的。这导致物体检测和位姿估计信息不准确。提出了一种利用点云数据进行工业物体位姿估计的方法,以提高位姿估计精度。在特征提取过程中,通过将RGB图像的外观特征与点云的几何特征相结合,同时捕获全局和局部信息。将语义信息与实例特征相结合,有效地区分了相似物体的实例。深度信息与RGB颜色通道的融合丰富了空间上下文和结构。采用交叉熵损失函数进行多类目标分类,采用判别损失函数进行实例分割。还引入了一种新颖的点云配准方法,以解决将3D关键点映射到2D平面时的重投影误差。该方法利用3D几何信息,通过点云曲率和法向量提取边缘特征,并将其与模型进行配准,以获得准确的位姿信息。实验结果表明,该方法在LineMod和YCB-Video数据集上是有效且优越的。最后,通过在抓取平台上部署机器人手臂来抓取物体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/953f/11727297/145912099a9f/entropy-26-01022-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验