Suppr超能文献

抑郁症多模态生物传感方法的整合:现状、挑战与未来展望

Integration of Multi-Modal Biosensing Approaches for Depression: Current Status, Challenges, and Future Perspectives.

作者信息

Zhao Xuanzhu, Lou Zhangrong, Shah Pir Tariq, Wu Chengjun, Liu Rong, Xie Wen, Zhang Sheng

机构信息

Key Laboratory of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China.

School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China.

出版信息

Sensors (Basel). 2025 Aug 7;25(15):4858. doi: 10.3390/s25154858.

Abstract

Depression represents one of the most prevalent mental health disorders globally, significantly impacting quality of life and posing substantial healthcare challenges. Traditional diagnostic methods rely on subjective assessments and clinical interviews, often leading to misdiagnosis, delayed treatment, and suboptimal outcomes. Recent advances in biosensing technologies offer promising avenues for objective depression assessment through detection of relevant biomarkers and physiological parameters. This review examines multi-modal biosensing approaches for depression by analyzing electrochemical biosensors for neurotransmitter monitoring alongside wearable sensors tracking autonomic, neural, and behavioral parameters. We explore sensor fusion methodologies, temporal dynamics analysis, and context-aware frameworks that enhance monitoring accuracy through complementary data streams. The review discusses clinical validation across diagnostic, screening, and treatment applications, identifying performance metrics, implementation challenges, and ethical considerations. We outline technical barriers, user acceptance factors, and data privacy concerns while presenting a development roadmap for personalized, continuous monitoring solutions. This integrative approach holds significant potential to revolutionize depression care by enabling earlier detection, precise diagnosis, tailored treatment, and sensitive monitoring guided by objective biosignatures. Successful implementation requires interdisciplinary collaboration among engineers, clinicians, data scientists, and end-users to balance technical sophistication with practical usability across diverse healthcare contexts.

摘要

抑郁症是全球最普遍的心理健康障碍之一,严重影响生活质量,并带来重大的医疗挑战。传统的诊断方法依赖主观评估和临床访谈,常常导致误诊、治疗延误和不理想的治疗结果。生物传感技术的最新进展为通过检测相关生物标志物和生理参数进行客观的抑郁症评估提供了有前景的途径。本综述通过分析用于神经递质监测的电化学生物传感器以及跟踪自主神经、神经和行为参数的可穿戴传感器,研究了用于抑郁症的多模态生物传感方法。我们探讨了传感器融合方法、时间动态分析以及通过互补数据流提高监测准确性的情境感知框架。该综述讨论了在诊断、筛查和治疗应用中的临床验证,确定了性能指标、实施挑战和伦理考量。我们概述了技术障碍、用户接受因素和数据隐私问题,同时提出了个性化、连续监测解决方案的发展路线图。这种综合方法通过实现早期检测、精确诊断、个性化治疗以及由客观生物特征引导的灵敏监测,具有彻底改变抑郁症护理的巨大潜力。成功实施需要工程师、临床医生、数据科学家和终端用户之间的跨学科合作,以便在不同的医疗环境中平衡技术复杂性与实际可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ebc/12349470/c0dd7e9f6c2b/sensors-25-04858-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验