Suppr超能文献

用于可穿戴设备压力监测的通用机器学习:系统文献综述

Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review.

作者信息

Vos Gideon, Trinh Kelly, Sarnyai Zoltan, Rahimi Azghadi Mostafa

机构信息

College of Science and Engineering, James Cook University, James Cook Dr, Townsville, 4811, QLD, Australia.

College of Public Health, Medical, and Vet Sciences, James Cook University, James Cook Dr, Townsville, 4811, QLD, Australia.

出版信息

Int J Med Inform. 2023 May;173:105026. doi: 10.1016/j.ijmedinf.2023.105026. Epub 2023 Feb 28.

Abstract

INTRODUCTION

Wearable sensors have shown promise as a non-intrusive method for collecting biomarkers that may correlate with levels of elevated stress. Stressors cause a variety of biological responses, and these physiological reactions can be measured using biomarkers including Heart Rate Variability (HRV), Electrodermal Activity (EDA) and Heart Rate (HR) that represent the stress response from the Hypothalamic-Pituitary-Adrenal (HPA) axis, the Autonomic Nervous System (ANS), and the immune system. While Cortisol response magnitude remains the gold standard indicator for stress assessment [1], recent advances in wearable technologies have resulted in the availability of a number of consumer devices capable of recording HRV, EDA and HR sensor biomarkers, amongst other signals. At the same time, researchers have been applying machine learning techniques to the recorded biomarkers in order to build models that may be able to predict elevated levels of stress.

OBJECTIVE

The aim of this review is to provide an overview of machine learning techniques utilized in prior research with a specific focus on model generalization when using these public datasets as training data. We also shed light on the challenges and opportunities that machine learning-enabled stress monitoring and detection face.

METHODS

This study reviewed published works contributing and/or using public datasets designed for detecting stress and their associated machine learning methods. The electronic databases of Google Scholar, Crossref, DOAJ and PubMed were searched for relevant articles and a total of 33 articles were identified and included in the final analysis. The reviewed works were synthesized into three categories of publicly available stress datasets, machine learning techniques applied using those, and future research directions. For the machine learning studies reviewed, we provide an analysis of their approach to results validation and model generalization. The quality assessment of the included studies was conducted in accordance with the IJMEDI checklist [2].

RESULTS

A number of public datasets were identified that are labeled for stress detection. These datasets were most commonly produced from sensor biomarker data recorded using the Empatica E4 device, a well-studied, medical-grade wrist-worn wearable that provides sensor biomarkers most notable to correlate with elevated levels of stress. Most of the reviewed datasets contain less than twenty-four hours of data, and the varied experimental conditions and labeling methodologies potentially limit their ability to generalize for unseen data. In addition, we discuss that previous works show shortcomings in areas such as their labeling protocols, lack of statistical power, validity of stress biomarkers, and model generalization ability.

CONCLUSION

Health tracking and monitoring using wearable devices is growing in popularity, while the generalization of existing machine learning models still requires further study, and research in this area will continue to provide improvements as newer and more substantial datasets become available.

摘要

引言

可穿戴传感器已展现出作为一种非侵入性方法来收集可能与压力升高水平相关的生物标志物的潜力。压力源会引发多种生物反应,这些生理反应可以通过生物标志物来测量,包括心率变异性(HRV)、皮肤电活动(EDA)和心率(HR),它们分别代表下丘脑 - 垂体 - 肾上腺(HPA)轴、自主神经系统(ANS)和免疫系统的应激反应。虽然皮质醇反应幅度仍然是压力评估的金标准指标[1],但可穿戴技术的最新进展已使得许多能够记录HRV、EDA和HR传感器生物标志物以及其他信号的消费级设备得以问世。与此同时,研究人员一直在将机器学习技术应用于所记录的生物标志物,以便构建能够预测压力升高水平的模型。

目的

本综述的目的是概述先前研究中所使用的机器学习技术,特别关注在将这些公共数据集用作训练数据时的模型泛化情况。我们还将阐明机器学习驱动的压力监测和检测所面临的挑战与机遇。

方法

本研究回顾了已发表的贡献和/或使用为检测压力而设计的公共数据集及其相关机器学习方法的作品。在谷歌学术、CrossRef、DOAJ和PubMed等电子数据库中搜索相关文章,共识别出33篇文章并纳入最终分析。所回顾的作品被综合分为三类:公开可用的压力数据集、使用这些数据集应用的机器学习技术以及未来的研究方向。对于所回顾的机器学习研究,我们分析了它们的结果验证和模型泛化方法。纳入研究的质量评估是根据IJMEDI清单[2]进行的。

结果

确定了一些标记用于压力检测的公共数据集。这些数据集最常见的是由使用Empatica E4设备记录的传感器生物标志物数据生成的,Empatica E4是一款经过充分研究的医疗级腕戴式可穿戴设备,它提供的传感器生物标志物与压力升高水平的相关性最为显著。大多数所回顾的数据集包含的数据少于24小时,并且不同的实验条件和标记方法可能会限制它们对未见数据的泛化能力。此外,我们讨论了先前的作品在诸如标记协议、缺乏统计效力、压力生物标志物的有效性以及模型泛化能力等方面存在的不足。

结论

使用可穿戴设备进行健康跟踪和监测越来越受欢迎,而现有机器学习模型的泛化仍需要进一步研究,随着更新、更大量的数据集出现,该领域的研究将持续取得进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验