Shi Yuanping, Ma Yanheng, Geng Liang, Chu Lina, Li Bingxuan, Li Wei
Department of UAV Engineering, Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China.
College of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang 050035, China.
Sensors (Basel). 2025 Aug 7;25(15):4871. doi: 10.3390/s25154871.
Apple-detection performance in orchards degrades markedly under low-light conditions, where intensified noise and non-uniform exposure blur edge cues critical for precise localisation. We propose Knowledge Distillation with Geometry-Consistent Feature Alignment (KDFA), a compact end-to-end framework that couples image enhancement and detection through the following two complementary components: (i) Cross-Domain Mutual-Information-Bound Knowledge Distillation, which maximises an InfoNCE lower bound between daylight-teacher and low-light-student region embeddings; (ii) Geometry-Consistent Feature Alignment, which imposes Laplacian smoothness and bipartite graph correspondences across multiscale feature lattices. Trained on 1200 pixel-aligned bright/low-light image pairs, KDFA achieves 51.3% mean Average Precision (mAPQ [0.50:0.95]) on a challenging low-light apple-detection benchmark, setting a new state of the art by simultaneously bridging the illumination-domain gap and preserving geometric consistency.
在果园中,苹果检测性能在低光照条件下会显著下降,此时增强的噪声和不均匀曝光会模糊对精确定位至关重要的边缘线索。我们提出了具有几何一致性特征对齐的知识蒸馏(KDFA),这是一个紧凑的端到端框架,通过以下两个互补组件将图像增强和检测结合起来:(i)跨域互信息约束知识蒸馏,它最大化日光教师和低光照学生区域嵌入之间的InfoNCE下限;(ii)几何一致性特征对齐,它在多尺度特征格上施加拉普拉斯平滑和二分图对应。在1200对像素对齐的明亮/低光照图像对上进行训练后,KDFA在具有挑战性的低光照苹果检测基准上实现了51.3%的平均精度均值(mAPQ [0.50:0.95]),通过同时弥合光照域差距和保持几何一致性,创造了新的技术水平。