Suppr超能文献

基于合成异常对比蒸馏的工业图像异常检测

Industrial Image Anomaly Detection via Synthetic-Anomaly Contrastive Distillation.

作者信息

Li Junxian, Li Mingxing, Huang Shucheng, Wang Gang, Zhao Xinjing

机构信息

School of Information Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China.

School of Electrical and Information Engineering, Jiangsu University JingJiang College, Zhenjiang 212013, China.

出版信息

Sensors (Basel). 2025 Jun 13;25(12):3721. doi: 10.3390/s25123721.

Abstract

Industrial image anomaly detection plays a critical role in intelligent manufacturing by automatically identifying defective products through visual inspection. While unsupervised approaches eliminate dependency on annotated anomaly samples, current teacher-student framework-based methods still face two fundamental limitations: insufficient discriminative capability for structural anomalies and suboptimal anomaly feature decoupling efficiency. To address these challenges, we propose a Synthetic-Anomaly Contrastive Distillation () framework for industrial anomaly detection. comprises two pivotal components: (1) a reverse distillation (RD) paradigm whereby a pre-trained teacher network extracts hierarchically structured representations, subsequently guiding the student network with inverse architectural configuration to establish hierarchical feature alignment; (2) a group of feature calibration () modules designed to refine the student's outputs by eliminating anomalous feature responses. During training, adopts a dual-branch strategy, where one branch encodes multi-scale features from defect-free images, while a Siamese anomaly branch processes synthetically corrupted counterparts. modules are trained to strip out a student's anomalous patterns in anomaly branches, enhancing the student network's exclusive modeling of normal patterns. We construct a dual-objective optimization integrating cross-model distillation loss and intra-model contrastive loss to train for feature alignment and discrepancy amplification. At the inference stage, pixel-wise anomaly scores are computed through multi-layer feature discrepancies between the teacher's representations and the student's refined outputs. Comprehensive evaluations on the MVTec AD and BTAD benchmark demonstrate that our method is effective and superior to current knowledge distillation-based approaches.

摘要

工业图像异常检测在智能制造中起着关键作用,通过视觉检查自动识别有缺陷的产品。虽然无监督方法消除了对带注释异常样本的依赖,但当前基于师生框架的方法仍面临两个基本限制:对结构异常的判别能力不足以及异常特征解耦效率欠佳。为应对这些挑战,我们提出了一种用于工业异常检测的合成异常对比蒸馏(SACD)框架。SACD包含两个关键组件:(1)一种反向蒸馏(RD)范式,其中预训练的教师网络提取层次结构化表示,随后引导具有反向架构配置的学生网络建立层次特征对齐;(2)一组特征校准(FC)模块,旨在通过消除异常特征响应来细化学生的输出。在训练期间,SACD采用双分支策略,其中一个分支对无缺陷图像的多尺度特征进行编码,而一个连体异常分支处理合成损坏的对应图像。FC模块经过训练以去除学生在异常分支中的异常模式,增强学生网络对正常模式的排他性建模。我们构建了一个整合跨模型蒸馏损失和模型内对比损失的双目标优化,以训练SACD进行特征对齐和差异放大。在推理阶段,通过教师表示与学生细化输出之间的多层特征差异来计算逐像素异常分数。在MVTec AD和BTAD基准上的综合评估表明,我们的方法是有效的,并且优于当前基于知识蒸馏的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b5/12197221/3d9e3d4f074f/sensors-25-03721-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验