Zheng Yinxia, Ding Qian, Zhao Huiru, Jin Bingqi, Sun Nan, Shen Xiao, Li Haoxuan
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
Small. 2025 Aug 14:e04776. doi: 10.1002/smll.202504776.
Solar-induced sorption-desorption based atmospheric water harvesting (SSDAWH) has emerged as a promising technology to mitigate global water scarcity through moisture capture across broad relative humidity (RH) ranges using advanced sorbents. While metal-organic frameworks (MOFs) have demonstrated exceptional potential in water capture applications, their practical implementation faces two critical challenges: the persistent gap between laboratory research and field deployment, and sluggish desorption kinetics that severely constrain SSDAWH system efficiency. To address these limitations, a novel MOF-303-LiCl composite integrated with reactive black dye-grafted fibrous mats (LiCl@MOF-chelated black viscose nonwoven mat, LMBVNM) is developed, creating a photothermal sorbent platform that enables rapid and complete moisture cycling. This engineered architecture achieves dual functionality: the fibrous mats substrate provides mechanical stability and mass transport channels for practical device integration, while the MOF-303-LiCl/dye system synergistically enhances both moisture capture capacity and solar-driven release kinetics. The system demonstrates exceptional performance with a record adsorption capacity of 4.95 g·g at 90% RH combined with 98.2% water recovery within 20 min under 1 sun illumination. Although MOF-303 is well-known in the materials community, the innovation lies in incorporating MOF-303 into reactive black dye-grafted commercial fibrous mats, paves the way for the large-scale practical application of MOFs in atmospheric water harvesting.
基于太阳能诱导吸附-解吸的大气水收集技术(SSDAWH)已成为一种有前景的技术,可通过使用先进吸附剂在较宽的相对湿度(RH)范围内捕获水分来缓解全球水资源短缺问题。虽然金属有机框架(MOF)在水捕获应用中已展现出卓越潜力,但其实际应用面临两个关键挑战:实验室研究与现场部署之间始终存在差距,以及解吸动力学缓慢,这严重限制了SSDAWH系统的效率。为解决这些限制,开发了一种新型的MOF-303-LiCl复合材料,其与反应性黑色染料接枝的纤维垫集成在一起(LiCl@MOF螯合黑色粘胶无纺布垫,LMBVNM),创建了一个光热吸附剂平台,可实现快速且完全的水分循环。这种工程化结构实现了双重功能:纤维垫基材为实际设备集成提供机械稳定性和传质通道,而MOF-303-LiCl/染料系统协同增强了水分捕获能力和太阳能驱动的释放动力学。该系统表现出卓越性能,在90%RH下的吸附容量达到创纪录的4.95 g·g,并且在1个太阳光照下20分钟内水回收率达到98.2%。尽管MOF-303在材料领域广为人知,但创新之处在于将MOF-303纳入反应性黑色染料接枝的商用纤维垫中,为MOF在大气水收集中的大规模实际应用铺平了道路。